Suppr超能文献

用于加速制备去细胞骨骼肌支架的灌注生物反应器的开发。

Development of an infusion bioreactor for the accelerated preparation of decellularized skeletal muscle scaffolds.

作者信息

Kasukonis Benjamin M, Kim John T, Washington Tyrone A, Wolchok Jeffrey C

机构信息

Dept. of Biomedical Engineering, College of Engineering, University of Arkansas, Fayetteville, Arkansas.

Dept. of Health, Human Performance, and Health Professionals, College of Education and Health Professionals, University of Arkansas, Fayetteville, Arkansas.

出版信息

Biotechnol Prog. 2016 May;32(3):745-55. doi: 10.1002/btpr.2257. Epub 2016 May 17.

Abstract

The implantation of decellularized tissue has shown effectiveness as a strategy for the treatment of volumetric muscle loss (VML) injuries. The preparation of decellularized tissue typically relies on the diffusion driven removal of cellular debris. For bulky tissues like muscle, the process can be lengthy, which introduces opportunities for both tissue contamination and degradation of key ECM molecules. In this study we report on the accelerated preparation of decellularized skeletal muscle (DSM) scaffolds using a infusion system and examine scaffold performance for the repair of VML injuries. The preparation of DSM scaffolds using infusion was dramatically accelerated. As the infusion rate (1% SDS) was increased from 0.1 to 1 and 10ml/hr, the time needed to remove intracellular myoglobin and actin decreased from a maximum of 140 ± 3hrs to 45 ± 3hrs and 10 ± 2hrs respectively. Although infusion appeared to remove cellular debris more aggressively, it did not significantly decrease the collagen or glycosaminoglycan composition of DSM samples when compared to un-infused controls. Infusion prepared DSM samples retained the aligned network structure and mechanical integrity of control samples. Infusion prepared DSM samples supported the attachment and in-vitro proliferation of myoblast cells and was well tolerated by the host when examined in-vivo. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:745-755, 2016.

摘要

去细胞组织的植入已被证明是治疗大面积肌肉缺损(VML)损伤的一种有效策略。去细胞组织的制备通常依赖于扩散驱动的细胞碎片清除。对于像肌肉这样的大块组织,这个过程可能会很长,这就带来了组织污染和关键细胞外基质(ECM)分子降解的机会。在本研究中,我们报告了使用灌注系统加速制备去细胞骨骼肌(DSM)支架,并研究了该支架修复VML损伤的性能。使用灌注法制备DSM支架的过程显著加速。随着灌注速率(1%十二烷基硫酸钠)从0.1增加到1和10毫升/小时,去除细胞内肌红蛋白和肌动蛋白所需的时间分别从最长140±3小时减少到45±3小时和10±2小时。虽然灌注似乎更积极地去除了细胞碎片,但与未灌注的对照相比,它并没有显著降低DSM样品的胶原蛋白或糖胺聚糖成分。灌注制备的DSM样品保留了对照样品的排列网络结构和机械完整性。灌注制备的DSM样品支持成肌细胞的附着和体外增殖,并且在体内检测时能被宿主很好地耐受。©2016美国化学工程师学会生物技术进展,32:745 - 755,2016。

相似文献

1
Development of an infusion bioreactor for the accelerated preparation of decellularized skeletal muscle scaffolds.
Biotechnol Prog. 2016 May;32(3):745-55. doi: 10.1002/btpr.2257. Epub 2016 May 17.
2
Perfusion-decellularized skeletal muscle as a three-dimensional scaffold with a vascular network template.
Biomaterials. 2016 May;89:114-26. doi: 10.1016/j.biomaterials.2016.02.040. Epub 2016 Feb 26.
3
Development of a biological scaffold engineered using the extracellular matrix secreted by skeletal muscle cells.
Biomaterials. 2015 May;49:9-17. doi: 10.1016/j.biomaterials.2015.01.027. Epub 2015 Feb 11.
5
The characterization of decellularized human skeletal muscle as a blueprint for mimetic scaffolds.
J Mater Sci Mater Med. 2016 Aug;27(8):125. doi: 10.1007/s10856-016-5735-0. Epub 2016 Jun 20.
6
Cell-Derived Extracellular Matrix Fiber Scaffolds Improve Recovery from Volumetric Muscle Loss.
Tissue Eng Part A. 2024 Mar;30(5-6):181-191. doi: 10.1089/ten.TEA.2022.0227. Epub 2023 Nov 21.
7
Decellularized Human Skeletal Muscle as Biologic Scaffold for Reconstructive Surgery.
Int J Mol Sci. 2015 Jul 1;16(7):14808-31. doi: 10.3390/ijms160714808.
9
Mouse Skeletal Muscle Decellularization.
Methods Mol Biol. 2018;1577:87-93. doi: 10.1007/7651_2017_28.
10
Preparation of decellularized biphasic hierarchical myotendinous junction extracellular matrix for muscle regeneration.
Acta Biomater. 2018 Mar 1;68:15-28. doi: 10.1016/j.actbio.2017.12.035. Epub 2017 Dec 30.

引用本文的文献

1
Integrating Physical and Biochemical Cues for Muscle Engineering: Scaffolds and Graft Durability.
Bioengineering (Basel). 2024 Dec 9;11(12):1245. doi: 10.3390/bioengineering11121245.
3
Decellularization Strategies for Regenerating Cardiac and Skeletal Muscle Tissues.
Front Bioeng Biotechnol. 2022 Feb 28;10:831300. doi: 10.3389/fbioe.2022.831300. eCollection 2022.
4
Graft alignment impacts the regenerative response of skeletal muscle after volumetric muscle loss in a rat model.
Acta Biomater. 2020 Mar 15;105:191-202. doi: 10.1016/j.actbio.2020.01.024. Epub 2020 Jan 22.
5
Regenerative Repair of Volumetric Muscle Loss Injury is Sensitive to Age.
Tissue Eng Part A. 2020 Jan;26(1-2):3-14. doi: 10.1089/ten.TEA.2019.0034. Epub 2019 Aug 9.
6
Canine Placenta Recellularized Using Yolk Sac Cells with Vascular Endothelial Growth Factor.
Biores Open Access. 2018 Jul 1;7(1):101-106. doi: 10.1089/biores.2018.0014. eCollection 2018.
9
Recovery from volumetric muscle loss injury: A comparison between young and aged rats.
Exp Gerontol. 2016 Oct;83:37-46. doi: 10.1016/j.exger.2016.07.008. Epub 2016 Jul 17.

本文引用的文献

1
Contractility of single cardiomyocytes differentiated from pluripotent stem cells depends on physiological shape and substrate stiffness.
Proc Natl Acad Sci U S A. 2015 Oct 13;112(41):12705-10. doi: 10.1073/pnas.1508073112. Epub 2015 Sep 28.
3
Effects of storage conditions on the stability of serum CD163, NGAL, HMGB1 and MIP2.
Int J Clin Exp Pathol. 2015 Apr 1;8(4):4099-105. eCollection 2015.
4
Biomechanical Origins of Muscle Stem Cell Signal Transduction.
J Mol Biol. 2016 Apr 10;428(7):1441-54. doi: 10.1016/j.jmb.2015.05.004. Epub 2015 May 21.
5
Engineered composite tissue as a bioartificial limb graft.
Biomaterials. 2015 Aug;61:246-56. doi: 10.1016/j.biomaterials.2015.04.051. Epub 2015 May 22.
6
Decellularized cartilage may be a chondroinductive material for osteochondral tissue engineering.
PLoS One. 2015 May 12;10(5):e0121966. doi: 10.1371/journal.pone.0121966. eCollection 2015.
7
Development and Characterization of Acellular Extracellular Matrix Scaffolds from Porcine Menisci for Use in Cartilage Tissue Engineering.
Tissue Eng Part C Methods. 2015 Sep;21(9):971-86. doi: 10.1089/ten.TEC.2015.0036. Epub 2015 Jun 10.
8
Characterisation of porcine dermis scaffolds decellularised using a novel non-enzymatic method for biomedical applications.
J Biomater Appl. 2015 Aug;30(2):239-53. doi: 10.1177/0885328215578638. Epub 2015 Apr 8.
10
Physical rehabilitation improves muscle function following volumetric muscle loss injury.
BMC Sports Sci Med Rehabil. 2014 Dec 19;6(1):41. doi: 10.1186/2052-1847-6-41. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验