Suppr超能文献

生物警报:一个用于从生物活性和毒性数据集中推导结构警报的Python库。

Bioalerts: a python library for the derivation of structural alerts from bioactivity and toxicity data sets.

作者信息

Cortes-Ciriano Isidro

机构信息

Unité de Bioinformatique Structurale, CNRS UMR 3825, Département de Biologie Structurale et Chimie, Institut Pasteur, 25, rue du Dr. Roux, 75015 Paris, France.

出版信息

J Cheminform. 2016 Mar 4;8:13. doi: 10.1186/s13321-016-0125-7. eCollection 2016.

Abstract

BACKGROUND

Assessing compound toxicity at early stages of the drug discovery process is a crucial task to dismiss drug candidates likely to fail in clinical trials. Screening drug candidates against structural alerts, i.e. chemical fragments associated to a toxicological response prior or after being metabolized (bioactivation), has proved a valuable approach for this task. During the last decades, diverse algorithms have been proposed for the automatic derivation of structural alerts from categorical toxicity data sets.

RESULTS AND CONCLUSIONS

Here, the python library bioalerts is presented, which comprises functionalities for the automatic derivation of structural alerts from categorical (dichotomous), e.g. toxic/non-toxic, and continuous bioactivity data sets, e.g. [Formula: see text] or [Formula: see text] values. The library bioalerts relies on the RDKit implementation of the circular Morgan fingerprint algorithm to compute chemical substructures, which are derived by considering radial atom neighbourhoods of increasing bond radius. In addition to the derivation of structural alerts, bioalerts provides functionalities for the calculation of unhashed (keyed) Morgan fingerprints, which can be used in predictive bioactivity modelling with the advantage of allowing for a chemically meaningful deconvolution of the chemical space. Finally, bioalerts provides functionalities for the easy visualization of the derived structural alerts.

摘要

背景

在药物发现过程的早期阶段评估化合物毒性是一项关键任务,可排除那些可能在临床试验中失败的候选药物。针对结构警示物(即与代谢(生物活化)之前或之后的毒理学反应相关的化学片段)筛选候选药物,已被证明是完成这项任务的一种有价值的方法。在过去几十年中,已经提出了多种算法用于从分类毒性数据集中自动推导结构警示物。

结果与结论

本文介绍了Python库bioalerts,它具有从分类(二分)数据集(例如有毒/无毒)和连续生物活性数据集(例如[公式:见原文]或[公式:见原文]值)自动推导结构警示物的功能。bioalerts库依赖于圆形摩根指纹算法的RDKit实现来计算化学子结构,这些子结构是通过考虑键半径不断增加的径向原子邻域而得出的。除了推导结构警示物之外,bioalerts还提供了计算未哈希(带键)摩根指纹的功能,这些指纹可用于预测性生物活性建模,其优点是允许对化学空间进行具有化学意义的反卷积。最后,bioalerts提供了便于可视化所推导结构警示物的功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2348/4779235/c3137dea3953/13321_2016_125_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验