Suppr超能文献

厚壁血管化组织的三维生物打印

Three-dimensional bioprinting of thick vascularized tissues.

作者信息

Kolesky David B, Homan Kimberly A, Skylar-Scott Mark A, Lewis Jennifer A

机构信息

School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138.

School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138

出版信息

Proc Natl Acad Sci U S A. 2016 Mar 22;113(12):3179-84. doi: 10.1073/pnas.1521342113. Epub 2016 Mar 7.

Abstract

The advancement of tissue and, ultimately, organ engineering requires the ability to pattern human tissues composed of cells, extracellular matrix, and vasculature with controlled microenvironments that can be sustained over prolonged time periods. To date, bioprinting methods have yielded thin tissues that only survive for short durations. To improve their physiological relevance, we report a method for bioprinting 3D cell-laden, vascularized tissues that exceed 1 cm in thickness and can be perfused on chip for long time periods (>6 wk). Specifically, we integrate parenchyma, stroma, and endothelium into a single thick tissue by coprinting multiple inks composed of human mesenchymal stem cells (hMSCs) and human neonatal dermal fibroblasts (hNDFs) within a customized extracellular matrix alongside embedded vasculature, which is subsequently lined with human umbilical vein endothelial cells (HUVECs). These thick vascularized tissues are actively perfused with growth factors to differentiate hMSCs toward an osteogenic lineage in situ. This longitudinal study of emergent biological phenomena in complex microenvironments represents a foundational step in human tissue generation.

摘要

组织工程以及最终器官工程的发展需要具备这样一种能力,即能够构建由细胞、细胞外基质和脉管系统组成的人体组织,并使其处于可控的微环境中,且这种微环境能够长时间维持。迄今为止,生物打印方法所产生的薄组织只能存活较短时间。为了提高其生理相关性,我们报告了一种生物打印三维载细胞、血管化组织的方法,该组织厚度超过1厘米,可在芯片上长时间灌注(>6周)。具体而言,我们通过在定制的细胞外基质中与嵌入式脉管系统一起共打印由人间充质干细胞(hMSCs)和人新生儿真皮成纤维细胞(hNDFs)组成的多种墨水,将实质、基质和内皮整合到单个厚组织中,随后用人类脐静脉内皮细胞(HUVECs)对脉管系统进行内衬。这些厚的血管化组织被积极灌注生长因子,以使hMSCs在原位向成骨谱系分化。这种对复杂微环境中新兴生物学现象的纵向研究代表了人类组织生成的一个基础步骤。

相似文献

1
Three-dimensional bioprinting of thick vascularized tissues.
Proc Natl Acad Sci U S A. 2016 Mar 22;113(12):3179-84. doi: 10.1073/pnas.1521342113. Epub 2016 Mar 7.
2
Three-dimensional fabrication of thick and densely populated soft constructs with complex and actively perfused channel network.
Acta Biomater. 2018 Jan;65:174-184. doi: 10.1016/j.actbio.2017.10.047. Epub 2017 Nov 10.
3
3D Bioprinting for Vascularized Tissue Fabrication.
Ann Biomed Eng. 2017 Jan;45(1):132-147. doi: 10.1007/s10439-016-1653-z. Epub 2016 May 26.
4
In vitro human tissues via multi-material 3-D bioprinting.
Altern Lab Anim. 2018 Sep;46(4):209-215. doi: 10.1177/026119291804600404.
5
3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs.
Adv Mater. 2014 May 21;26(19):3124-30. doi: 10.1002/adma.201305506. Epub 2014 Feb 18.
6
Microfluidic Bioprinting of Heterogeneous 3D Tissue Constructs.
Methods Mol Biol. 2017;1612:369-380. doi: 10.1007/978-1-4939-7021-6_26.
7
Bioprinting for vascular and vascularized tissue biofabrication.
Acta Biomater. 2017 Mar 15;51:1-20. doi: 10.1016/j.actbio.2017.01.035. Epub 2017 Jan 11.
9
Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture.
Biomaterials. 2017 Apr;124:106-115. doi: 10.1016/j.biomaterials.2017.01.042. Epub 2017 Feb 2.
10
State-of-the-Art Review of 3D Bioprinting for Cardiovascular Tissue Engineering.
Ann Biomed Eng. 2017 Jan;45(1):195-209. doi: 10.1007/s10439-016-1607-5. Epub 2016 Apr 11.

引用本文的文献

1
Materials and device strategies to enhance spatiotemporal resolution in bioelectronics.
Nat Rev Mater. 2025 Jun;10(6):425-448. doi: 10.1038/s41578-025-00798-y. Epub 2025 May 1.
4
Integrated bioprinting of trachea-like structures based on tissue-specific bioink.
Mater Today Bio. 2025 Jul 16;34:102105. doi: 10.1016/j.mtbio.2025.102105. eCollection 2025 Oct.
5
Bioprinting vascularized skin analogs: a stepwise approach.
Burns Trauma. 2025 Mar 2;13:tkaf018. doi: 10.1093/burnst/tkaf018. eCollection 2025.
6
models of muscle spindles: From traditional methods to 3D bioprinting strategies.
J Tissue Eng. 2025 Jul 23;16:20417314251343388. doi: 10.1177/20417314251343388. eCollection 2025 Jan-Dec.
7
Preclinical Evaluation and Advancements in Vascularized Bone Tissue Engineering.
Biomimetics (Basel). 2025 Jun 20;10(7):412. doi: 10.3390/biomimetics10070412.
8
Integrative approaches in cardiac tissue engineering: Bridging cellular complexity to create accurate physiological models.
iScience. 2025 Jun 25;28(8):113003. doi: 10.1016/j.isci.2025.113003. eCollection 2025 Aug 15.
9
Scalable Biofabrication of Functional 3D Scaffolds via Synergy of Autopilot Single-Jet Electrospun 3D PCL Fiber Scaffolds and Cell-Laden Hydrogels.
ACS Appl Mater Interfaces. 2025 Aug 27;17(34):47878-47893. doi: 10.1021/acsami.5c07425. Epub 2025 Jul 22.
10
Stimuli-responsive hybrid materials for 4D tissue models.
Mater Today Bio. 2025 Jul 2;33:102035. doi: 10.1016/j.mtbio.2025.102035. eCollection 2025 Aug.

本文引用的文献

1
Strategies for improving the physiological relevance of human engineered tissues.
Trends Biotechnol. 2015 Jul;33(7):401-7. doi: 10.1016/j.tibtech.2015.04.003. Epub 2015 Apr 30.
2
Microfluidic organs-on-chips.
Nat Biotechnol. 2014 Aug;32(8):760-72. doi: 10.1038/nbt.2989.
3
3D bioprinting of tissues and organs.
Nat Biotechnol. 2014 Aug;32(8):773-85. doi: 10.1038/nbt.2958.
4
3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs.
Adv Mater. 2014 May 21;26(19):3124-30. doi: 10.1002/adma.201305506. Epub 2014 Feb 18.
5
Optimal periodic perfusion strategy for robust long-term microfluidic cell culture.
Lab Chip. 2013 Nov 21;13(22):4430-41. doi: 10.1039/c3lc50643f.
7
Engineering complex tissues.
Sci Transl Med. 2012 Nov 14;4(160):160rv12. doi: 10.1126/scitranslmed.3004890.
8
Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues.
Nat Mater. 2012 Sep;11(9):768-74. doi: 10.1038/nmat3357. Epub 2012 Jul 1.
9
Remote activation of biomolecules in deep tissues using near-infrared-to-UV upconversion nanotransducers.
Proc Natl Acad Sci U S A. 2012 May 29;109(22):8483-8. doi: 10.1073/pnas.1114551109. Epub 2012 May 10.
10
From 3D cell culture to organs-on-chips.
Trends Cell Biol. 2011 Dec;21(12):745-54. doi: 10.1016/j.tcb.2011.09.005. Epub 2011 Oct 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验