Cheron Guy, Petit Géraldine, Cheron Julian, Leroy Axelle, Cebolla Anita, Cevallos Carlos, Petieau Mathieu, Hoellinger Thomas, Zarka David, Clarinval Anne-Marie, Dan Bernard
Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles Neuroscience Institut, Université Libre de BruxellesBrussels, Belgium; Laboratory of Electrophysiology, Université de Mons-HainautMons, Belgium.
Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles Neuroscience Institut, Université Libre de Bruxelles Brussels, Belgium.
Front Psychol. 2016 Feb 26;7:246. doi: 10.3389/fpsyg.2016.00246. eCollection 2016.
Brain dynamics is at the basis of top performance accomplishment in sports. The search for neural biomarkers of performance remains a challenge in movement science and sport psychology. The non-invasive nature of high-density electroencephalography (EEG) recording has made it a most promising avenue for providing quantitative feedback to practitioners and coaches. Here, we review the current relevance of the main types of EEG oscillations in order to trace a perspective for future practical applications of EEG and event-related potentials (ERP) in sport. In this context, the hypotheses of unified brain rhythms and continuity between wake and sleep states should provide a functional template for EEG biomarkers in sport. The oscillations in the thalamo-cortical and hippocampal circuitry including the physiology of the place cells and the grid cells provide a frame of reference for the analysis of delta, theta, beta, alpha (incl.mu), and gamma oscillations recorded in the space field of human performance. Based on recent neuronal models facilitating the distinction between the different dynamic regimes (selective gating and binding) in these different oscillations we suggest an integrated approach articulating together the classical biomechanical factors (3D movements and EMG) and the high-density EEG and ERP signals to allow finer mathematical analysis to optimize sport performance, such as microstates, coherency/directionality analysis and neural generators.
脑动力学是体育领域取得卓越成绩的基础。寻找运动表现的神经生物标志物在运动科学和运动心理学中仍然是一项挑战。高密度脑电图(EEG)记录的非侵入性使其成为向从业者和教练提供定量反馈的最有前景的途径。在此,我们回顾了主要类型的脑电振荡的当前相关性,以便为脑电图和事件相关电位(ERP)在体育中的未来实际应用描绘一个前景。在这种背景下,统一脑节律以及清醒和睡眠状态之间连续性的假设应为体育中的脑电图生物标志物提供一个功能模板。丘脑 - 皮质和海马回路中的振荡,包括位置细胞和网格细胞的生理学,为分析在人类运动表现空间领域中记录的δ、θ、β、α(包括μ)和γ振荡提供了一个参考框架。基于最近有助于区分这些不同振荡中不同动态模式(选择性门控和绑定)的神经元模型,我们建议一种综合方法,将经典生物力学因素(三维运动和肌电图)与高密度脑电图和ERP信号结合起来,以便进行更精细的数学分析,以优化运动表现,如微状态、相干性/方向性分析和神经发生器。