Suppr超能文献

定量磷酸化蛋白质组学的当前技术水平及其在糖尿病研究中的应用。

The current state of the art of quantitative phosphoproteomics and its applications to diabetes research.

作者信息

Chan Chi Yuet X'avia, Gritsenko Marina A, Smith Richard D, Qian Wei-Jun

机构信息

a Biological Sciences Division and Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , WA , USA.

出版信息

Expert Rev Proteomics. 2016;13(4):421-33. doi: 10.1586/14789450.2016.1164604.

Abstract

Protein phosphorylation is a fundamental regulatory mechanism in many cellular processes and aberrant perturbation of phosphorylation has been implicated in various human diseases. Kinases and their cognate inhibitors have been considered as hotspots for drug development. Therefore, the emerging tools, which enable a system-wide quantitative profiling of phosphoproteome, would offer a powerful impetus in unveiling novel signaling pathways, drug targets and/or biomarkers for diseases of interest. This review highlights recent advances in phosphoproteomics, the current state of the art of the technologies and the challenges and future perspectives of this research area. Finally, some exemplary applications of phosphoproteomics in diabetes research are underscored.

摘要

蛋白质磷酸化是许多细胞过程中的一种基本调节机制,磷酸化的异常扰动与多种人类疾病有关。激酶及其同源抑制剂一直被视为药物开发的热点。因此,能够对磷酸化蛋白质组进行全系统定量分析的新兴工具,将为揭示感兴趣疾病的新信号通路、药物靶点和/或生物标志物提供强大动力。本综述重点介绍了磷酸化蛋白质组学的最新进展、技术的当前水平以及该研究领域的挑战和未来展望。最后,强调了磷酸化蛋白质组学在糖尿病研究中的一些典型应用。

相似文献

1
The current state of the art of quantitative phosphoproteomics and its applications to diabetes research.
Expert Rev Proteomics. 2016;13(4):421-33. doi: 10.1586/14789450.2016.1164604.
2
Recent advances and challenges in plant phosphoproteomics.
Proteomics. 2015 Mar;15(5-6):1127-41. doi: 10.1002/pmic.201400410. Epub 2015 Jan 21.
4
Technologies and challenges in large-scale phosphoproteomics.
Proteomics. 2013 Mar;13(6):910-31. doi: 10.1002/pmic.201200484.
5
Recent findings and technological advances in phosphoproteomics for cells and tissues.
Expert Rev Proteomics. 2015;12(5):469-87. doi: 10.1586/14789450.2015.1078730.
6
Application of targeted mass spectrometry in bottom-up proteomics for systems biology research.
J Proteomics. 2018 Oct 30;189:75-90. doi: 10.1016/j.jprot.2018.02.008. Epub 2018 Feb 13.
7
Advances in phosphopeptide enrichment techniques for phosphoproteomics.
Amino Acids. 2012 Sep;43(3):1009-24. doi: 10.1007/s00726-012-1288-9. Epub 2012 Jul 22.
8
Phosphoproteomics and molecular cardiology: techniques, applications and challenges.
J Mol Cell Cardiol. 2012 Sep;53(3):354-68. doi: 10.1016/j.yjmcc.2012.06.001. Epub 2012 Jun 9.
9
Two Birds with One Stone: Parallel Quantification of Proteome and Phosphoproteome Using iTRAQ.
Methods Mol Biol. 2016;1394:25-41. doi: 10.1007/978-1-4939-3341-9_3.
10
Global and site-specific quantitative phosphoproteomics: principles and applications.
Annu Rev Pharmacol Toxicol. 2009;49:199-221. doi: 10.1146/annurev.pharmtox.011008.145606.

引用本文的文献

1
Optimized Time-Segmented Acquisition Expands Peptide and Protein Identification in TIMS-TOF Pro Mass Spectrometry.
J Proteome Res. 2025 Feb 7;24(2):526-536. doi: 10.1021/acs.jproteome.4c00690. Epub 2025 Jan 22.
4
Why and how to investigate the role of protein phosphorylation in ZIP and ZnT zinc transporter activity and regulation.
Cell Mol Life Sci. 2020 Aug;77(16):3085-3102. doi: 10.1007/s00018-020-03473-3. Epub 2020 Feb 19.
6
Mass spectrometry-based proteomics for system-level characterization of biological responses to engineered nanomaterials.
Anal Bioanal Chem. 2018 Sep;410(24):6067-6077. doi: 10.1007/s00216-018-1168-6. Epub 2018 Jun 8.
7
Targeted Quantification of Phosphorylation Dynamics in the Context of EGFR-MAPK Pathway.
Anal Chem. 2018 Apr 17;90(8):5256-5263. doi: 10.1021/acs.analchem.8b00071. Epub 2018 Apr 3.
8
Impact of Phosphorylation on the Mass Spectrometry Quantification of Intact Phosphoproteins.
Anal Chem. 2018 Apr 17;90(8):4935-4939. doi: 10.1021/acs.analchem.7b05246. Epub 2018 Mar 26.
9
Advances in microscale separations towards nanoproteomics applications.
J Chromatogr A. 2017 Nov 10;1523:40-48. doi: 10.1016/j.chroma.2017.07.055. Epub 2017 Jul 21.

本文引用的文献

1
SerpinB1 Promotes Pancreatic β Cell Proliferation.
Cell Metab. 2016 Jan 12;23(1):194-205. doi: 10.1016/j.cmet.2015.12.001. Epub 2015 Dec 15.
4
Quantitative Phosphoproteomics Revealed Glucose-Stimulated Responses of Islet Associated with Insulin Secretion.
J Proteome Res. 2015 Nov 6;14(11):4635-46. doi: 10.1021/acs.jproteome.5b00507. Epub 2015 Oct 15.
5
High-throughput phosphoproteomics reveals in vivo insulin signaling dynamics.
Nat Biotechnol. 2015 Sep;33(9):990-5. doi: 10.1038/nbt.3327. Epub 2015 Aug 17.
6
7
An Augmented Multiple-Protease-Based Human Phosphopeptide Atlas.
Cell Rep. 2015 Jun 23;11(11):1834-43. doi: 10.1016/j.celrep.2015.05.029. Epub 2015 Jun 11.
8
Understanding the Cellular and Molecular Mechanisms of Physical Activity-Induced Health Benefits.
Cell Metab. 2015 Jul 7;22(1):4-11. doi: 10.1016/j.cmet.2015.05.011. Epub 2015 Jun 11.
10
Signal Transduction Reaction Monitoring Deciphers Site-Specific PI3K-mTOR/MAPK Pathway Dynamics in Oncogene-Induced Senescence.
J Proteome Res. 2015 Jul 2;14(7):2906-14. doi: 10.1021/acs.jproteome.5b00236. Epub 2015 Jun 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验