Fenix Aidan M, Taneja Nilay, Buttler Carmen A, Lewis John, Van Engelenburg Schuyler B, Ohi Ryoma, Burnette Dylan T
Vanderbilt University School of Medicine, Nashville, TN 37232.
University of Denver, Denver, CO 80208.
Mol Biol Cell. 2016 Mar 9;27(9):1465-78. doi: 10.1091/mbc.E15-10-0725.
Cell movement and cytokinesis are facilitated by contractile forces generated by the molecular motor, non-muscle myosin II (NMII). NMII molecules form a filament (NMII-F) through interactions of their C-terminal rod domains, positioning groups of N-terminal motor domains on opposite sides. The NMII motors then bind and pull actin filaments toward the NMII-F, thus driving contraction. Inside of crawling cells, NMIIA-Fs form large macromolecular ensembles (i.e., NMIIA-F stacks) but how this occurs is unknown. Here we show NMIIA-F stacks are formed through two non-mutually exclusive mechanisms: expansion and concatenation. During expansion, NMIIA molecules within the NMIIA-F spread out concurrent with addition of new NMIIA molecules. Concatenation occurs when multiple NMIIA-F/NMIIA-F stacks move together and align. We found NMIIA-F stack formation was regulated by both motor-activity and the availability of surrounding actin filaments. Furthermore, our data showed expansion and concatenation also formed the contractile ring in dividing cells. Thus, interphase and mitotic cells share similar mechanisms for creating large contractile units, and these are likely to underlie how other myosin II-based contractile systems are assembled.
细胞运动和胞质分裂由分子马达非肌肉肌球蛋白II(NMII)产生的收缩力推动。NMII分子通过其C末端杆状结构域的相互作用形成细丝(NMII-F),将N末端马达结构域组定位在相对的两侧。然后,NMII马达结合并将肌动蛋白丝拉向NMII-F,从而驱动收缩。在爬行细胞内部,NMIIA-F形成大型大分子聚集体(即NMIIA-F堆栈),但其形成方式尚不清楚。在这里,我们表明NMIIA-F堆栈通过两种非相互排斥的机制形成:扩展和串联。在扩展过程中,NMIIA-F内的NMIIA分子随着新的NMIIA分子的添加而散开。当多个NMIIA-F/NMIIA-F堆栈一起移动并对齐时发生串联。我们发现NMIIA-F堆栈的形成受马达活性和周围肌动蛋白丝可用性的调节。此外,我们的数据表明,扩展和串联也在分裂细胞中形成收缩环。因此,间期细胞和有丝分裂细胞在创建大型收缩单位方面具有相似的机制,而这些机制可能是其他基于肌球蛋白II的收缩系统组装方式的基础。