Suppr超能文献

一个作物育种周期就能摆脱饥饿?通过对作物光合作用进行工程改造以应对不断上升的二氧化碳和温度,这可能是实现缓解的一条重要途径。

One crop breeding cycle from starvation? How engineering crop photosynthesis for rising CO2 and temperature could be one important route to alleviation.

作者信息

Kromdijk Johannes, Long Stephen P

机构信息

Carl Woese Institute for Genomic Biology, University of Illinois, 1206 Gregory Drive, Urbana, IL 61801, USA.

Carl Woese Institute for Genomic Biology, University of Illinois, 1206 Gregory Drive, Urbana, IL 61801, USA

出版信息

Proc Biol Sci. 2016 Mar 16;283(1826):20152578. doi: 10.1098/rspb.2015.2578.

Abstract

Global climate change is likely to severely impact human food production. This comes at a time when predicted demand for primary foodstuffs by a growing human population and changing global diets is already outpacing a stagnating annual rate of increase in crop productivity. Additionally, the time required by crop breeding and bioengineering to release improved varieties to farmers is substantial, meaning that any crop improvements needed to mitigate food shortages in the 2040s would need to start now. In this perspective, the rationale for improvements in photosynthetic efficiency as a breeding objective for higher yields is outlined. Subsequently, using simple simulation models it is shown how predicted changes in temperature and atmospheric [CO2] affect leaf photosynthetic rates. The chloroplast accounts for the majority of leaf nitrogen in crops. Within the chloroplast about 25% of nitrogen is invested in the carboxylase, Rubisco, which catalyses the first step of CO2 assimilation. Most of the remaining nitrogen is invested in the apparatus to drive carbohydrate synthesis and regenerate ribulose-1:5-bisphosphate (RuBP), the CO2-acceptor molecule at Rubisco. At preindustrial [CO2], investment in these two aspects may have been balanced resulting in co-limitation. At today's [CO2], there appears to be over-investment in Rubisco, and despite the counter-active effects of rising temperature and [CO2], this imbalance is predicted to worsen with global climate change. By breeding or engineering restored optimality under future conditions increased productivity could be achieved in both tropical and temperate environments without additional nitrogen fertilizer. Given the magnitude of the potential shortfall, better storage conditions, improved crop management and better crop varieties will all be needed. With the short time-scale at which food demand is expected to outpace supplies, all available technologies to improve crop varieties, from classical crop breeding to crop genetic engineering should be employed. This will require vastly increased public and private investment to support translation of first discovery in laboratories to replicated field trials, and an urgent re-evaluation of regulation of crop genetic engineering.

摘要

全球气候变化可能会严重影响人类粮食生产。目前,预计不断增长的人口对主要食品的需求以及全球饮食结构的变化,已经使作物生产力的年增长率停滞不前,而需求增长速度却超过了这一增长率。此外,作物育种和生物工程向农民推广改良品种所需的时间很长,这意味着为缓解2040年代的粮食短缺而需要进行的任何作物改良都必须现在就开始。从这个角度出发,本文概述了将提高光合效率作为提高产量的育种目标的基本原理。随后,使用简单的模拟模型展示了温度和大气[CO₂]的预测变化如何影响叶片光合速率。叶绿体占作物叶片氮的大部分。在叶绿体内,约25%的氮用于羧化酶——核酮糖-1,5-二磷酸羧化酶(Rubisco),它催化CO₂同化的第一步。其余大部分氮用于驱动碳水化合物合成和再生核酮糖-1,5-二磷酸(RuBP)的装置,RuBP是Rubisco的CO₂受体分子。在工业化前的[CO₂]水平下,在这两个方面的投入可能是平衡的,导致共同限制。在当今的[CO₂]水平下,似乎对Rubisco的投入过多,尽管温度升高和[CO₂]增加有反作用,但预计这种不平衡会随着全球气候变化而加剧。通过育种或工程手段在未来条件下恢复最佳状态,在不额外施用氮肥的情况下,热带和温带环境都可以提高生产力。鉴于潜在短缺的规模,将需要更好的储存条件、改进的作物管理和更好的作物品种。由于预计粮食需求超过供应的时间尺度很短,应采用所有可用的技术来改良作物品种,从传统作物育种到作物基因工程。这将需要大幅增加公共和私人投资,以支持将实验室的首次发现转化为重复的田间试验,并迫切重新评估作物基因工程的监管。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5f7/4810849/078981601ed4/rspb20152578-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验