James Weir Fluids Laboratory, University of Strathclyde, Glasgow, UK.
Strathclyde Institute of Pharmacy and Biological Sciences, University of Strathclyde, Glasgow, UK.
Anal Chim Acta. 2016 Mar 31;914:7-16. doi: 10.1016/j.aca.2016.02.006. Epub 2016 Feb 13.
Significant advances have been made in developing microfluidic polymerase chain reaction (PCR) devices in the last two decades. More recently, microfluidic microdroplet technology has been exploited to perform PCR in droplets because of its unique features. For example, it can prevent crossover contamination and PCR inhibition, is suitable for single-cell and single-molecule analyses, and has the potential for system integration and automation. This review will therefore focus on recent developments on droplet-based continuous-flow microfluidic PCR, and the major research challenges. This paper will also discuss a new way of on-chip flow control and a rational design simulation tool, which are required to underpin fully integrated and automated droplet-based microfluidic systems. We will conclude with a scientific speculation of future autonomous scientific discoveries enabled by microfluidic microdroplet technologies.
在过去的二十年中,微流控聚合酶链反应(PCR)设备的发展取得了重大进展。最近,由于其独特的特性,微流控微滴技术已被用于在微滴中进行 PCR。例如,它可以防止交叉污染和 PCR 抑制,适用于单细胞和单分子分析,并且具有系统集成和自动化的潜力。因此,本综述将重点介绍基于液滴的连续流微流控 PCR 的最新进展和主要研究挑战。本文还将讨论一种新的芯片上流量控制方法和一个合理的设计模拟工具,这是完全集成和自动化的基于液滴的微流控系统所必需的。我们将以微流控微滴技术实现未来自主科学发现的科学推测结束本文。