Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, 43210, USA.
Biophysics Graduate Program, The Ohio State University, Columbus, OH, 43210, USA.
Small. 2018 Nov;14(47):e1802580. doi: 10.1002/smll.201802580. Epub 2018 Oct 11.
Significant progress in DNA nanotechnology has accelerated the development of molecular machines with functions like macroscale machines. However, the mobility of DNA self-assembled nanorobots is still dramatically limited due to challenges with designing and controlling nanoscale systems with many degrees of freedom. Here, an origami-inspired method to design transformable DNA nanomachines is presented. This approach integrates stiff panels formed by bundles of double-stranded DNA connected with foldable creases formed by single-stranded DNA. To demonstrate the method, a DNA version of the paper origami mechanism called a waterbomb base (WBB) consisting of six panels connected by six joints is constructed. This nanoscale WBB can follow four distinct motion paths to transform between five distinct configurations including a flat square, two triangles, a rectangle, and a fully compacted trapezoidal shape. To achieve this, the sequence specificity of DNA base-pairing is leveraged for the selective actuation of joints and the ion-sensitivity of base-stacking interactions is employed for the flattening of joints. In addition, higher-order assembly of DNA WBBs into reconfigurable arrays is achieved. This work establishes a foundation for origami-inspired design for next generation synthetic molecular robots and reconfigurable nanomaterials enabling more complex and controllable motion.
DNA 纳米技术的重大进展加速了具有宏观机器功能的分子机器的发展。然而,由于设计和控制具有多个自由度的纳米级系统存在挑战,DNA 自组装纳米机器人的移动性仍然受到极大限制。在这里,提出了一种受折纸启发的设计可变形 DNA 纳米机器人的方法。该方法集成了由双链 DNA 束形成的刚性面板,这些面板通过由单链 DNA 形成的可折叠折痕连接。为了验证该方法,构建了一个由六个面板通过六个关节连接而成的名为水雷基(WBB)的 DNA 折纸机制的版本。这个纳米级的 WBB 可以遵循四个不同的运动路径,在五个不同的配置之间转换,包括一个平面正方形、两个三角形、一个矩形和一个完全压缩的梯形。为了实现这一点,利用 DNA 碱基配对的序列特异性来选择性地驱动关节,并且利用碱基堆积相互作用的离子敏感性来使关节变平。此外,还实现了 DNA WBB 到可重构阵列的高级组装。这项工作为下一代合成分子机器人和可重构纳米材料的折纸启发式设计奠定了基础,从而实现了更复杂和可控的运动。