Pandey Shivendra, Gultepe Evin, Gracias David H
Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, MD, USA.
J Vis Exp. 2013 Feb 4(72):e50022. doi: 10.3791/50022.
There are numerous techniques such as photolithography, electron-beam lithography and soft-lithography that can be used to precisely pattern two dimensional (2D) structures. These technologies are mature, offer high precision and many of them can be implemented in a high-throughput manner. We leverage the advantages of planar lithography and combine them with self-folding methods(1-20) wherein physical forces derived from surface tension or residual stress, are used to curve or fold planar structures into three dimensional (3D) structures. In doing so, we make it possible to mass produce precisely patterned static and reconfigurable particles that are challenging to synthesize. In this paper, we detail visualized experimental protocols to create patterned particles, notably, (a) permanently bonded, hollow, polyhedra that self-assemble and self-seal due to the minimization of surface energy of liquefied hinges(21-23) and (b) grippers that self-fold due to residual stress powered hinges(24,25). The specific protocol described can be used to create particles with overall sizes ranging from the micrometer to the centimeter length scales. Further, arbitrary patterns can be defined on the surfaces of the particles of importance in colloidal science, electronics, optics and medicine. More generally, the concept of self-assembling mechanically rigid particles with self-sealing hinges is applicable, with some process modifications, to the creation of particles at even smaller, 100 nm length scales(22, 26) and with a range of materials including metals(21), semiconductors(9) and polymers(27). With respect to residual stress powered actuation of reconfigurable grasping devices, our specific protocol utilizes chromium hinges of relevance to devices with sizes ranging from 100 μm to 2.5 mm. However, more generally, the concept of such tether-free residual stress powered actuation can be used with alternate high-stress materials such as heteroepitaxially deposited semiconductor films(5,7) to possibly create even smaller nanoscale grasping devices.
有许多技术,如光刻、电子束光刻和软光刻,可用于精确地对二维(2D)结构进行图案化。这些技术已经成熟,具有高精度,并且其中许多技术可以高通量方式实现。我们利用平面光刻的优势,并将其与自折叠方法(1 - 20)相结合,其中利用表面张力或残余应力产生的物理力将平面结构弯曲或折叠成三维(3D)结构。这样,我们就能够大规模生产精确图案化的静态和可重构颗粒,而这些颗粒的合成具有挑战性。在本文中,我们详细介绍了用于创建图案化颗粒的可视化实验方案,具体而言,(a)通过液化铰链表面能最小化实现自组装和自密封的永久粘结空心多面体(21 - 23),以及(b)由残余应力驱动铰链实现自折叠的夹具(24,25)。所描述的特定方案可用于创建整体尺寸从微米到厘米长度尺度的颗粒。此外,在胶体科学、电子学、光学和医学中重要的颗粒表面可以定义任意图案。更一般地说,具有自密封铰链的自组装机械刚性颗粒的概念,经过一些工艺修改后,适用于创建甚至更小的、100纳米长度尺度的颗粒(22,26),并且适用于包括金属(21)、半导体(9)和聚合物(27)在内的一系列材料。关于可重构抓取装置的残余应力驱动,我们的特定方案利用了与尺寸范围从100μm到2.5mm的装置相关的铬铰链。然而,更一般地说,这种无束缚残余应力驱动的概念可以与诸如异质外延沉积半导体薄膜(5,7)等替代高应力材料一起使用,以可能创建甚至更小的纳米级抓取装置。