Suppr超能文献

大鼠内嗅皮层II/III层主细胞的抑制后反弹尖峰:体内、体外及计算模型表征

Post-Inhibitory Rebound Spikes in Rat Medial Entorhinal Layer II/III Principal Cells: In Vivo, In Vitro, and Computational Modeling Characterization.

作者信息

Ferrante Michele, Shay Christopher F, Tsuno Yusuke, William Chapman G, Hasselmo Michael E

机构信息

Center for Memory and Brain.

Department of Psychological and Brain Sciences.

出版信息

Cereb Cortex. 2017 Mar 1;27(3):2111-2125. doi: 10.1093/cercor/bhw058.

Abstract

Medial entorhinal cortex Layer-II stellate cells (mEC-LII-SCs) primarily interact via inhibitory interneurons. This suggests the presence of alternative mechanisms other than excitatory synaptic inputs for triggering action potentials (APs) in stellate cells during spatial navigation. Our intracellular recordings show that the hyperpolarization-activated cation current (Ih) allows post-inhibitory-rebound spikes (PIRS) in mEC-LII-SCs. In vivo, strong inhibitory-post-synaptic potentials immediately preceded most APs shortening their delay and enhancing excitability. In vitro experiments showed that inhibition initiated spikes more effectively than excitation and that more dorsal mEC-LII-SCs produced faster and more synchronous spikes. In contrast, PIRS in Layer-II/III pyramidal cells were harder to evoke, voltage-independent, and slower in dorsal mEC. In computational simulations, mEC-LII-SCs morphology and Ih homeostatically regulated the dorso-ventral differences in PIRS timing and most dendrites generated PIRS with a narrow range of stimulus amplitudes. These results suggest inhibitory inputs could mediate the emergence of grid cell firing in a neuronal network.

摘要

内侧内嗅皮层II层星状细胞(mEC-LII-SCs)主要通过抑制性中间神经元进行相互作用。这表明在空间导航过程中,除了兴奋性突触输入外,还存在其他触发星状细胞动作电位(APs)的机制。我们的细胞内记录表明,超极化激活的阳离子电流(Ih)使mEC-LII-SCs产生抑制后反弹尖峰(PIRS)。在体内,大多数动作电位之前紧接着出现强烈的抑制性突触后电位,缩短了其延迟并增强了兴奋性。体外实验表明,抑制比兴奋更有效地引发尖峰,并且更靠背侧的mEC-LII-SCs产生更快、更同步的尖峰。相比之下,II/III层锥体细胞中的PIRS更难诱发,与电压无关,并且在背侧mEC中速度较慢。在计算模拟中,mEC-LII-SCs的形态和Ih通过稳态调节PIRS时间的背腹差异,并且大多数树突在狭窄的刺激幅度范围内产生PIRS。这些结果表明抑制性输入可能介导神经网络中网格细胞放电的出现。

相似文献

引用本文的文献

2
Septo-hippocampal dynamics and the encoding of space and time.隔-海马动态与空间和时间的编码。
Trends Neurosci. 2023 Sep;46(9):712-725. doi: 10.1016/j.tins.2023.06.004. Epub 2023 Jul 19.
6
Post-Inhibitory Rebound Firing of Dorsal Root Ganglia Neurons.背根神经节神经元的抑制后反弹放电
J Pain Res. 2022 Jul 26;15:2029-2040. doi: 10.2147/JPR.S370335. eCollection 2022.
7
Dynamical self-organization and efficient representation of space by grid cells.网格细胞对空间的动态自组织和有效表示。
Curr Opin Neurobiol. 2021 Oct;70:206-213. doi: 10.1016/j.conb.2021.11.007. Epub 2021 Nov 30.
8
Microcircuits for spatial coding in the medial entorhinal cortex.内侧内嗅皮层中用于空间编码的微电路。
Physiol Rev. 2022 Apr 1;102(2):653-688. doi: 10.1152/physrev.00042.2020. Epub 2021 Jul 13.
9
I from synapses to networks: HCN channel functions and modulation in neurons.从突触到网络:神经元中的 HCN 通道功能和调制。
Prog Biophys Mol Biol. 2021 Nov;166:119-132. doi: 10.1016/j.pbiomolbio.2021.06.002. Epub 2021 Jun 25.

本文引用的文献

8
Inhibition-induced theta resonance in cortical circuits.抑制诱导的皮质回路中的θ共振。
Neuron. 2013 Dec 4;80(5):1263-76. doi: 10.1016/j.neuron.2013.09.033.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验