Department of Mathematics, Faculty of Science, Cairo University, Giza 12613, Egypt.
Department of Mathematics, Faculty of Education, Sana'a University, Sana'a, Yemen.
J Adv Res. 2016 Mar;7(2):271-83. doi: 10.1016/j.jare.2015.06.004. Epub 2015 Jun 27.
In this paper, we presented a novel multi-strain TB model of variable-order fractional derivatives, which incorporates three strains: drug-sensitive, emerging multi-drug resistant (MDR) and extensively drug-resistant (XDR), as an extension for multi-strain TB model of nonlinear ordinary differential equations which developed in 2014 by Arino and Soliman [1]. Numerical simulations for this variable-order fractional model are the main aim of this work, where the variable-order fractional derivative is defined in the sense of Grünwald-Letnikov definition. Two numerical methods are presented for this model, the standard finite difference method (SFDM) and nonstandard finite difference method (NSFDM). Numerical comparison between SFDM and NSFDM is presented. It is concluded that, NSFDM preserves the positivity of the solutions and numerically stable in large regions than SFDM.
在本文中,我们提出了一个新的多菌株结核分枝杆菌变阶分数导数模型,该模型包含三种菌株:药物敏感、新兴的多药耐药(MDR)和广泛耐药(XDR),作为 2014 年 Arino 和 Soliman [1] 开发的非线性常微分方程多菌株结核分枝杆菌模型的扩展。这项工作的主要目的是对这个变阶分数模型进行数值模拟,其中变阶分数导数是根据 Grunwald-Letnikov 定义定义的。本文提出了两种针对该模型的数值方法,即标准有限差分法(SFDM)和非标准有限差分法(NSFDM)。对 SFDM 和 NSFDM 进行了数值比较。结果表明,与 SFDM 相比,NSFDM 在大区域内保持解的正定性和数值稳定性。