Suppr超能文献

分数阶非线性葡萄糖-胰岛素系统的滑模控制。

Sliding mode control for a fractional-order non-linear glucose-insulin system.

机构信息

PIEAS Artificial Intelligence Center (PAIC), Islamabad, Pakistan.

Department of Electrical Engineering, Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan.

出版信息

IET Syst Biol. 2020 Oct;14(5):223-229. doi: 10.1049/iet-syb.2020.0030.

Abstract

By providing the generalisation of integration and differentiation, and incorporating the memory and hereditary effects, fractional-order modelling has gotten significant attention in the past few years. One of the extensively studied and utilised models to describe the glucose-insulin system of a human body is Bergman's minimal model. This non-linear model comprises of integer-order differential equations. However, comparison with the experimental data shows that the fractional-order version of Bergman's minimal model is a better representative of the glucose-insulin system than its original integer-order model. To design a control law for an artificial pancreas for a diabetic patient using a fractional-order model, different techniques, including feedback linearisation, have been applied in the literature. The authors' previous work shows that the fractional-order version of Bergman's model describes the glucose-insulin system in a better way than the integer-order model. This study applies the sliding mode control technique and then compares the obtained simulation results with the ones obtained using feedback linearisation.

摘要

通过提供积分和微分的推广,并结合记忆和遗传效应,分数阶建模在过去几年中受到了广泛关注。在描述人体葡萄糖-胰岛素系统的广泛研究和应用模型中,伯格曼最小模型是其中之一。这个非线性模型包含整数阶微分方程。然而,与实验数据的比较表明,伯格曼最小模型的分数阶版本比其原始整数阶模型更能代表葡萄糖-胰岛素系统。为了使用分数阶模型为糖尿病患者设计人工胰腺的控制律,文献中应用了不同的技术,包括反馈线性化。作者之前的工作表明,伯格曼模型的分数阶版本比整数阶模型更能描述葡萄糖-胰岛素系统。本研究应用滑模控制技术,然后将得到的模拟结果与使用反馈线性化得到的结果进行比较。

相似文献

1
Sliding mode control for a fractional-order non-linear glucose-insulin system.
IET Syst Biol. 2020 Oct;14(5):223-229. doi: 10.1049/iet-syb.2020.0030.
2
Presentation of the model and optimal control of non-linear fractional-order chaotic system of glucose-insulin.
Comput Methods Biomech Biomed Engin. 2024 May;27(7):836-848. doi: 10.1080/10255842.2023.2205979. Epub 2023 May 5.
3
The Unscented Kalman Filter estimates the plasma insulin from glucose measurement.
Biosystems. 2011 Jan;103(1):67-72. doi: 10.1016/j.biosystems.2010.09.012. Epub 2010 Oct 8.
4
Wiener sliding-mode control for artificial pancreas: a new nonlinear approach to glucose regulation.
Comput Methods Programs Biomed. 2012 Aug;107(2):327-40. doi: 10.1016/j.cmpb.2012.03.001. Epub 2012 May 5.
6
Adaptive fuzzy integral sliding mode control of blood glucose level in patients with type 1 diabetes: In silico studies.
Math Biosci. 2018 Nov;305:122-132. doi: 10.1016/j.mbs.2018.09.006. Epub 2018 Sep 7.
7
Model free sliding mode controller for blood glucose control: Towards artificial pancreas without need to mathematical model of the system.
Comput Methods Programs Biomed. 2020 Oct;195:105663. doi: 10.1016/j.cmpb.2020.105663. Epub 2020 Jul 18.
8
Control oriented model of insulin and glucose dynamics in type 1 diabetics.
Med Biol Eng Comput. 2006 Mar;44(1-2):69-78. doi: 10.1007/s11517-005-0012-2.
9
Nonlinear modeling of the dynamic effects of infused insulin on glucose: comparison of compartmental with Volterra models.
IEEE Trans Biomed Eng. 2009 Oct;56(10):2347-58. doi: 10.1109/TBME.2009.2024209. Epub 2009 Jun 2.

本文引用的文献

1
Blood glucose concentration control for type 1 diabetic patients: a multiple-model strategy.
IET Syst Biol. 2020 Feb;14(1):24-30. doi: 10.1049/iet-syb.2018.5049.
2
Parameter estimation of a meal glucose-insulin model for TIDM patients from therapy historical data.
IET Syst Biol. 2019 Feb;13(1):8-15. doi: 10.1049/iet-syb.2018.5038.
3
IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045.
Diabetes Res Clin Pract. 2018 Apr;138:271-281. doi: 10.1016/j.diabres.2018.02.023. Epub 2018 Feb 26.
4
Treatment of Type 1 Diabetes: Synopsis of the 2017 American Diabetes Association Standards of Medical Care in Diabetes.
Ann Intern Med. 2017 Oct 3;167(7):493-498. doi: 10.7326/M17-1259. Epub 2017 Sep 12.
5
Blood glucose concentration control for type 1 diabetic patients: a non-linear suboptimal approach.
IET Syst Biol. 2017 Aug;11(4):119-125. doi: 10.1049/iet-syb.2016.0044.
6
Numerical study for multi-strain tuberculosis (TB) model of variable-order fractional derivatives.
J Adv Res. 2016 Mar;7(2):271-83. doi: 10.1016/j.jare.2015.06.004. Epub 2015 Jun 27.
7
Artificial pancreas: past, present, future.
Diabetes. 2011 Nov;60(11):2672-82. doi: 10.2337/db11-0654.
8
Neural network-based real-time prediction of glucose in patients with insulin-dependent diabetes.
Diabetes Technol Ther. 2011 Feb;13(2):135-41. doi: 10.1089/dia.2010.0104.
9
Estimation of future glucose concentrations with subject-specific recursive linear models.
Diabetes Technol Ther. 2009 Apr;11(4):243-53. doi: 10.1089/dia.2008.0065.
10
A novel blood glucose regulation using TSK0-FCMAC: a fuzzy CMAC based on the zero-ordered TSK fuzzy inference scheme.
IEEE Trans Neural Netw. 2009 May;20(5):856-71. doi: 10.1109/TNN.2008.2011735. Epub 2009 Mar 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验