Department of Materials Science and Engineering, University of Texas at Dallas , Richardson, Texas 75080, United States.
Department of Materials Science and Engineering, University of Virginia , Charlottesville, Virginia 22904, United States.
ACS Appl Mater Interfaces. 2016 Mar;8(12):8289-94. doi: 10.1021/acsami.6b00275. Epub 2016 Mar 21.
The formation of the Ti-MoS2 interface, which is heavily utilized in nanoelectronic device research, is studied by X-ray photoelectron spectroscopy. It is found that, if deposition under high vacuum (∼1 × 10(-6) mbar) as opposed to ultrahigh vacuum (∼1 × 10(-9) mbar) conditions are used, TiO2 forms at the interface rather than Ti. The high vacuum deposition results in an interface free of any detectable reaction between the semiconductor and the deposited contact. In contrast, when metallic titanium is successfully deposited by carrying out depositions in ultrahigh vacuum, the titanium reacts with MoS2 forming Ti(x)S(y) and metallic Mo at the interface. These results have far reaching implications as many prior studies assuming Ti contacts may have actually used TiO2 due to the nature of the deposition tools used.
通过 X 射线光电子能谱研究了在纳米电子器件研究中大量使用的 Ti-MoS2 界面的形成。研究发现,如果在高真空(约 1×10(-6) mbar)而非超高真空(约 1×10(-9) mbar)条件下进行沉积,那么在界面处形成的是 TiO2 而不是 Ti。高真空沉积导致半导体和沉积接触之间没有任何可检测到的反应。相比之下,当通过在超高真空下进行沉积成功地沉积金属钛时,钛与 MoS2 反应形成 Ti(x)S(y)和界面处的金属 Mo。这些结果意义深远,因为许多之前的研究假设 Ti 接触实际上可能由于使用的沉积工具的性质而使用了 TiO2。