Suppr超能文献

通过CMOS兼容金属接触实现的单层MoS场效应晶体管的低接触电阻

Low Contact Resistance on Monolayer MoS Field-Effect Transistors Achieved by CMOS-Compatible Metal Contacts.

作者信息

Sun Zheng, Kim Seong Yeoul, Cai Jun, Shen Jianan, Lan Hao-Yu, Tan Yuanqiu, Wang Xinglu, Shen Chao, Wang Haiyan, Chen Zhihong, Wallace Robert M, Appenzeller Joerg

机构信息

School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States.

Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States.

出版信息

ACS Nano. 2024 Aug 20;18(33):22444-22453. doi: 10.1021/acsnano.4c07267. Epub 2024 Aug 7.

Abstract

Contact engineering on monolayer layer (ML) semiconducting transition metal dichalcogenides (TMDs) is considered the most challenging problem toward using these materials as a transistor channel in future advanced technology nodes. The typically observed strong Fermi-level pinning induced in part by the reaction of the source/drain contact metal and the ML TMD frequently results in a large Schottky barrier height, which limits the electrical performance of ML TMD field-effect transistors (FETs). However, at a microscopic level, little is known about how interface defects or reaction sites impact the electrical performance of ML TMD FETs. In this work, we have performed statistically meaningful electrical measurements on at least 120 FETs combined with careful surface analysis to unveil contact resistance dependence on interface chemistry. In particular, we achieved a low contact resistance for ML MoS FETs with ultrahigh-vacuum (UHV, 3 × 10 mbar) deposited Ni contacts, ∼500 Ω·μm, which is 5 times lower than the contact resistance achieved when deposited under high-vacuum (HV, 3 × 10 mbar) conditions. These electrical results strongly correlate with our surface analysis observations. X-ray photoelectron spectroscopy (XPS) revealed significant bonding species between Ni and MoS under UHV conditions compared to that under HV. We also studied the Bi/MoS interface under UHV and HV deposition conditions. Different from the case of Ni, we do not observe a difference in contact resistance or interface chemistry between contacts deposited under UHV and HV. Finally, this article also explores the thermal stability and reliability of the two contact metals employed here.

摘要

在单层(ML)半导体过渡金属二硫属化物(TMD)上进行接触工程被认为是在未来先进技术节点中将这些材料用作晶体管沟道时最具挑战性的问题。通常观察到的强费米能级钉扎部分是由源极/漏极接触金属与ML TMD的反应引起的,这经常导致大的肖特基势垒高度,从而限制了ML TMD场效应晶体管(FET)的电性能。然而,在微观层面,关于界面缺陷或反应位点如何影响ML TMD FET的电性能知之甚少。在这项工作中,我们对至少120个FET进行了具有统计意义的电学测量,并结合仔细的表面分析,以揭示接触电阻对界面化学的依赖性。特别是,我们通过超高真空(UHV,3×10⁻¹⁰ mbar)沉积的Ni接触实现了ML MoS₂ FET的低接触电阻,约为500 Ω·μm,这比在高真空(HV,3×10⁻⁷ mbar)条件下沉积时实现的接触电阻低5倍。这些电学结果与我们的表面分析观察结果密切相关。X射线光电子能谱(XPS)显示,与HV条件下相比,UHV条件下Ni与MoS₂之间存在显著的键合物种。我们还研究了UHV和HV沉积条件下的Bi/MoS₂界面。与Ni不同,我们没有观察到UHV和HV沉积的接触之间在接触电阻或界面化学方面的差异。最后,本文还探讨了这里使用的两种接触金属的热稳定性和可靠性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验