Wang Xinglu, Kim Seong Yeoul, Wallace Robert M
Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas 75080, United States.
ACS Appl Mater Interfaces. 2021 Apr 7;13(13):15802-15810. doi: 10.1021/acsami.0c22476. Epub 2021 Mar 25.
High contact resistance of transition-metal dichalcogenide (TMD)-based devices is one of the bottlenecks that limit the application of TMDs in various domains. Contact resistance of TMD-based devices is strongly related to the interface chemistry and band alignment at the contact metal/TMD interfaces. To understand the metal/MoS interface chemistry and band alignment, Ni and Ag metal contacts are deposited on MoS bulk and chemical vapor deposition bilayer MoS (2L-MoS) film samples under ultrahigh vacuum (∼3 × 10 mbar) and high vacuum (∼3 × 10 mbar) conditions. X-ray photoelectron spectroscopy is used to characterize the interface chemistry and band alignment of the metal/MoS stacks. Ni forms covalent contact on MoS bulk and 2L-MoS film by reducing MoS to form interfacial metal sulfides. In contrast, van der Waals gaps form at the Ag/MoS bulk and Ag/2L-MoS film interfaces, proved by the absence of an additional metal sulfide chemical state and the detection of Ag islands on the surface. Different from other metal/MoS systems studied in this work, Ag shows potential to form an Ohmic contact on MoS bulk regardless of the deposition ambient. Fermi levels ('s) are pinned near the intrinsic of the 2L-MoS film with high defect density regardless of the work function of the metal, which highlights the impact of substrate defect density on the pinning effect and contact resistance.
基于过渡金属二卤化物(TMD)的器件具有高接触电阻,这是限制TMD在各个领域应用的瓶颈之一。基于TMD的器件的接触电阻与接触金属/TMD界面处的界面化学和能带排列密切相关。为了了解金属/MoS界面化学和能带排列,在超高真空(约3×10毫巴)和高真空(约3×10毫巴)条件下,将Ni和Ag金属触点沉积在MoS块体和化学气相沉积双层MoS(2L-MoS)薄膜样品上。利用X射线光电子能谱来表征金属/MoS叠层的界面化学和能带排列。Ni通过还原MoS形成界面金属硫化物,从而在MoS块体和2L-MoS薄膜上形成共价接触。相比之下,在Ag/MoS块体和Ag/2L-MoS薄膜界面处形成了范德华间隙,这通过不存在额外的金属硫化物化学态以及在表面检测到Ag岛得到了证明。与本工作中研究的其他金属/MoS系统不同,无论沉积环境如何,Ag在MoS块体上都显示出形成欧姆接触的潜力。无论金属的功函数如何,费米能级都钉扎在具有高缺陷密度的2L-MoS薄膜的本征能级附近,这突出了衬底缺陷密度对能级钉扎效应和接触电阻的影响。