Genge Christine E, Stevens Charles M, Davidson William S, Singh Gurpreet, Peter Tieleman D, Tibbits Glen F
Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada.
Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada Cardiovascular Sciences, Child and Family Research Institute, Vancouver, British Columbia, Canada.
Genome Biol Evol. 2016 Apr 11;8(4):994-1011. doi: 10.1093/gbe/evw044.
Gene duplication results in extra copies of genes that must coevolve with their interacting partners in multimeric protein complexes. The cardiac troponin (Tn) complex, containing TnC, TnI, and TnT, forms a distinct functional unit critical for the regulation of cardiac muscle contraction. In teleost fish, the function of the Tn complex is modified by the consequences of differential expression of paralogs in response to environmental thermal challenges. In this article, we focus on the interaction between TnI and TnC, coded for by genes that have independent evolutionary origins, but the co-operation of their protein products has necessitated coevolution. In this study, we characterize functional divergence of TnC and TnI paralogs, specifically the interrelated roles of regulatory subfunctionalization and structural subfunctionalization. We determined that differential paralog transcript expression in response to temperature acclimation results in three combinations of TnC and TnI in the zebrafish heart: TnC1a/TnI1.1, TnC1b/TnI1.1, and TnC1a/TnI1.5. Phylogenetic analysis of these highly conserved proteins identified functionally divergent residues in TnI and TnC. The structural and functional effect of these Tn combinations was modeled with molecular dynamics simulation to link divergent sites to changes in interaction strength. Functional divergence in TnI and TnC were not limited to the residues involved with TnC/TnI switch interaction, which emphasizes the complex nature of Tn function. Patterns in domain-specific divergent selection and interaction energies suggest that substitutions in the TnI switch region are crucial to modifying TnI/TnC function to maintain cardiac contraction with temperature changes. This integrative approach introduces Tn as a model of functional divergence that guides the coevolution of interacting proteins.
基因复制会产生基因的额外拷贝,这些拷贝必须在多聚体蛋白复合物中与其相互作用伙伴共同进化。包含肌钙蛋白C(TnC)、肌钙蛋白I(TnI)和肌钙蛋白T(TnT)的心肌肌钙蛋白(Tn)复合物形成了一个独特的功能单元,对心肌收缩的调节至关重要。在硬骨鱼中,Tn复合物的功能会因旁系同源基因在应对环境热挑战时的差异表达而发生改变。在本文中,我们聚焦于由具有独立进化起源的基因编码的TnI和TnC之间的相互作用,但其蛋白质产物的合作需要共同进化。在本研究中,我们表征了TnC和TnI旁系同源基因的功能差异,特别是调节性亚功能化和结构性亚功能化的相互关联作用。我们确定,斑马鱼心脏中响应温度驯化的旁系同源转录本差异表达会产生三种TnC和TnI的组合:TnC1a/TnI1.1、TnC1b/TnI1.1和TnC1a/TnI1.5。对这些高度保守蛋白质的系统发育分析确定了TnI和TnC中功能不同的残基。通过分子动力学模拟对这些Tn组合的结构和功能效应进行建模,以将不同位点与相互作用强度的变化联系起来。TnI和TnC中的功能差异并不局限于参与TnC/TnI开关相互作用的残基,这强调了Tn功能的复杂性。结构域特异性差异选择和相互作用能的模式表明,TnI开关区域的取代对于改变TnI/TnC功能以在温度变化时维持心脏收缩至关重要。这种综合方法将Tn引入为功能差异的模型,可指导相互作用蛋白质的共同进化。