Lee Han B, Schwab Tanya L, Koleilat Alaa, Ata Hirotaka, Daby Camden L, Cervera Roberto Lopez, McNulty Melissa S, Bostwick Hannah S, Clark Karl J
1 Neurobiology of Disease Graduate Program, Mayo Graduate School , Rochester, Minnesota.
2 Department of Biochemistry and Molecular Biology, Mayo Clinic , Rochester, Minnesota.
Hum Gene Ther. 2016 Jun;27(6):425-35. doi: 10.1089/hum.2016.011. Epub 2016 Mar 17.
Customizable endonucleases such as transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) enable rapid generation of mutant strains at genomic loci of interest in animal models and cell lines. With the accelerated pace of generating mutant alleles, genotyping has become a rate-limiting step to understanding the effects of genetic perturbation. Unless mutated alleles result in distinct morphological phenotypes, mutant strains need to be genotyped using standard methods in molecular biology. Classic restriction fragment length polymorphism (RFLP) or sequencing is labor-intensive and expensive. Although simpler than RFLP, current versions of allele-specific PCR may still require post-polymerase chain reaction (PCR) handling such as sequencing, or they are more expensive if allele-specific fluorescent probes are used. Commercial genotyping solutions can take weeks from assay design to result, and are often more expensive than assembling reactions in-house. Key components of commercial assay systems are often proprietary, which limits further customization. Therefore, we developed a one-step open-source genotyping method based on quantitative PCR. The allele-specific qPCR (ASQ) does not require post-PCR processing and can genotype germline mutants through either threshold cycle (Ct) or end-point fluorescence reading. ASQ utilizes allele-specific primers, a locus-specific reverse primer, universal fluorescent probes and quenchers, and hot start DNA polymerase. Individual laboratories can further optimize this open-source system as we completely disclose the sequences, reagents, and thermal cycling protocol. We have tested the ASQ protocol to genotype alleles in five different genes. ASQ showed a 98-100% concordance in genotype scoring with RFLP or Sanger sequencing outcomes. ASQ is time-saving because a single qPCR without post-PCR handling suffices to score genotypes. ASQ is cost-effective because universal fluorescent probes negate the necessity of designing expensive probes for each locus.
可定制的核酸内切酶,如转录激活样效应因子核酸酶(TALENs)和成簇规律间隔短回文重复序列/CRISPR相关蛋白9(CRISPR/Cas9),能够在动物模型和细胞系的目标基因组位点快速生成突变株。随着突变等位基因生成速度的加快,基因分型已成为了解基因扰动效应的限速步骤。除非突变等位基因导致明显的形态学表型,否则突变株需要使用分子生物学的标准方法进行基因分型。经典的限制性片段长度多态性(RFLP)或测序方法既费力又昂贵。尽管比RFLP更简单,但当前版本的等位基因特异性PCR可能仍需要聚合酶链反应(PCR)后处理,如测序,或者如果使用等位基因特异性荧光探针则成本更高。商业基因分型解决方案从检测设计到出结果可能需要数周时间,而且通常比内部组装反应更昂贵。商业检测系统的关键组件往往是专有的,这限制了进一步的定制。因此,我们开发了一种基于定量PCR的一步开源基因分型方法。等位基因特异性定量PCR(ASQ)不需要PCR后处理,并且可以通过阈值循环(Ct)或终点荧光读数对种系突变体进行基因分型。ASQ利用等位基因特异性引物、位点特异性反向引物、通用荧光探针和淬灭剂,以及热启动DNA聚合酶。由于我们完全公开了序列、试剂和热循环方案,各个实验室可以进一步优化这个开源系统。我们已经测试了ASQ方案对五个不同基因的等位基因进行基因分型。ASQ在基因型评分上与RFLP或桑格测序结果的一致性为98 - 100%。ASQ节省时间,因为单个无需PCR后处理的定量PCR就足以对基因型进行评分。ASQ具有成本效益,因为通用荧光探针无需为每个位点设计昂贵的探针。