Patil Pritam S, Fountas-Davis Natalie, Huang He, Michelle Evancho-Chapman M, Fulton Judith A, Shriver Leah P, Leipzig Nic D
Department of Chemical and Biomolecular Engineering, University of Akron, OH 44325, USA.
Department of Chemistry, University of Akron, OH 44325, USA.
Acta Biomater. 2016 May;36:164-74. doi: 10.1016/j.actbio.2016.03.022. Epub 2016 Mar 18.
In this study, methacrylamide chitosan modified with perfluorocarbon chains (MACF) is used as the base material to construct hydrogel dressings for treating dermal wounds. MACF hydrogels saturated with oxygen (+O2) are examined for their ability to deliver and sustain oxygen, degrade in a biological environment, and promote wound healing in an animal model. The emerging technique of metabolomics is used to understand how MACF+O2 hydrogel dressings improve wound healing. Results indicate that MACF treatment facilitates oxygen transport rate that is two orders of magnitude greater than base MAC hydrogels. MACF hydrogel dressings are next tested in an in vivo splinted rat excisional wound healing model. Histological analysis reveals that MACF+O2 dressings improve re-epithelialization (p<0.0001) and synthesis of collagen over controls (p<0.01). Analysis of endogenous metabolites in the wounds using global metabolomics demonstrates that MACF+O2 dressings promotes a regenerative metabolic process directed toward hydroxyproline and collagen synthesis, with confirmation of metabolite levels within this pathway. The results of this study confirm that increased oxygen delivery through the application of MACF+O2 hydrogels enhances wound healing and metabolomics analyses provides a powerful tool to assess wound healing physiology.
This work presents the first application of a novel class of oxygen delivering biomaterials (methacrylamide chitosan modified with perfluorocarbon chains (MACF)) as a hydrogel wound dressing. This manuscript also contains strong focus on the biochemical benefits of MACF dressings on underlying mechanisms vital to successful wound healing. In this vein, this manuscript presents the application of applied metabolomics (tandem mass spectroscopy) to uncover biomaterial interactions with wound healing mechanisms. We believe the approaches described in this manuscript will be of great interest to biomedical scientists and particularly to researchers studying wound healing, metabolomics, applied biomaterials and regenerative medicine.
在本研究中,用全氟碳链修饰的甲基丙烯酰胺壳聚糖(MACF)被用作构建用于治疗皮肤伤口的水凝胶敷料的基础材料。对饱和氧气(+O2)的MACF水凝胶进行了检测,以评估其输送和维持氧气的能力、在生物环境中的降解能力以及在动物模型中促进伤口愈合的能力。采用新兴的代谢组学技术来了解MACF+O2水凝胶敷料如何促进伤口愈合。结果表明,MACF处理促进了氧气传输速率,比基础MAC水凝胶高两个数量级。接下来,在体内夹板固定的大鼠切除伤口愈合模型中对MACF水凝胶敷料进行了测试。组织学分析表明,与对照组相比,MACF+O2敷料可改善再上皮化(p<0.0001)和胶原蛋白合成(p<0.01)。使用全局代谢组学对伤口中的内源性代谢物进行分析表明,MACF+O2敷料促进了针对羟脯氨酸和胶原蛋白合成的再生代谢过程,并证实了该途径内的代谢物水平。本研究结果证实,通过应用MACF+O2水凝胶增加氧气输送可促进伤口愈合,代谢组学分析提供了一个评估伤口愈合生理学的有力工具。
本研究首次将一类新型的氧气输送生物材料(用全氟碳链修饰的甲基丙烯酰胺壳聚糖(MACF))用作水凝胶伤口敷料。本手稿还重点关注了MACF敷料对成功伤口愈合至关重要的潜在机制的生化益处。就此而言,本手稿展示了应用代谢组学(串联质谱)来揭示生物材料与伤口愈合机制的相互作用。我们相信,本手稿中描述的方法将引起生物医学科学家的极大兴趣,特别是对研究伤口愈合、代谢组学、应用生物材料和再生医学的研究人员。