Suppr超能文献

利用具有临床意义和生物学可解释性的特征从微观活检图像中检测和分类癌症。

Detection and Classification of Cancer from Microscopic Biopsy Images Using Clinically Significant and Biologically Interpretable Features.

作者信息

Kumar Rajesh, Srivastava Rajeev, Srivastava Subodh

机构信息

Department of Computer Science and Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India.

出版信息

J Med Eng. 2015;2015:457906. doi: 10.1155/2015/457906. Epub 2015 Aug 23.

Abstract

A framework for automated detection and classification of cancer from microscopic biopsy images using clinically significant and biologically interpretable features is proposed and examined. The various stages involved in the proposed methodology include enhancement of microscopic images, segmentation of background cells, features extraction, and finally the classification. An appropriate and efficient method is employed in each of the design steps of the proposed framework after making a comparative analysis of commonly used method in each category. For highlighting the details of the tissue and structures, the contrast limited adaptive histogram equalization approach is used. For the segmentation of background cells, k-means segmentation algorithm is used because it performs better in comparison to other commonly used segmentation methods. In feature extraction phase, it is proposed to extract various biologically interpretable and clinically significant shapes as well as morphology based features from the segmented images. These include gray level texture features, color based features, color gray level texture features, Law's Texture Energy based features, Tamura's features, and wavelet features. Finally, the K-nearest neighborhood method is used for classification of images into normal and cancerous categories because it is performing better in comparison to other commonly used methods for this application. The performance of the proposed framework is evaluated using well-known parameters for four fundamental tissues (connective, epithelial, muscular, and nervous) of randomly selected 1000 microscopic biopsy images.

摘要

提出并检验了一个使用具有临床意义和生物学可解释性特征从微观活检图像中自动检测和分类癌症的框架。所提出方法涉及的各个阶段包括微观图像增强、背景细胞分割、特征提取,最后是分类。在对每一类常用方法进行比较分析之后,在所提出框架的每个设计步骤中都采用了一种合适且高效的方法。为了突出组织和结构的细节,使用了对比度受限自适应直方图均衡化方法。对于背景细胞的分割,使用k均值分割算法,因为与其他常用分割方法相比,它表现更好。在特征提取阶段,建议从分割后的图像中提取各种具有生物学可解释性和临床意义的形状以及基于形态学的特征。这些特征包括灰度纹理特征、基于颜色的特征、颜色灰度纹理特征、基于劳氏纹理能量的特征、田村特征和小波特征。最后,使用K近邻方法将图像分类为正常和癌变类别,因为与该应用中其他常用方法相比,它表现更好。使用针对随机选择的1000张微观活检图像的四种基本组织(结缔组织、上皮组织、肌肉组织和神经组织)的知名参数来评估所提出框架的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bd8/4782618/2be9aa5a7a93/JME2015-457906.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验