McIntyre Alexa B R, Cleland Thomas A
Tri-Institutional Program in Computational Biology and Medicine, Cornell University, Ithaca, New York; and.
Department of Psychology, Cornell University, Ithaca, New York
J Neurophysiol. 2016 Jun 1;115(6):2937-49. doi: 10.1152/jn.00671.2015. Epub 2016 Mar 23.
The mitral cells (MCs) of the mammalian olfactory bulb (OB) constitute one of two populations of principal neurons (along with middle/deep tufted cells) that integrate afferent olfactory information with top-down inputs and intrinsic learning and deliver output to downstream olfactory areas. MC activity is regulated in part by inhibition from granule cells, which form reciprocal synapses with MCs along the extents of their lateral dendrites. However, with MC lateral dendrites reaching over 1.5 mm in length in rats, the roles of distal inhibitory synapses pose a quandary. Here, we systematically vary the properties of a MC model to assess the capacity of inhibitory synaptic inputs on lateral dendrites to influence afferent information flow through MCs. Simulations using passivized models with varying dendritic morphologies and synaptic properties demonstrated that, even with unrealistically favorable parameters, passive propagation fails to convey effective inhibitory signals to the soma from distal sources. Additional simulations using an active model exhibiting action potentials, subthreshold oscillations, and a dendritic morphology closely matched to experimental values further confirmed that distal synaptic inputs along the lateral dendrite could not exert physiologically relevant effects on MC spike timing at the soma. Larger synaptic conductances representative of multiple simultaneous inputs were not sufficient to compensate for the decline in signal with distance. Reciprocal synapses on distal MC lateral dendrites may instead serve to maintain a common fast oscillatory clock across the OB by delaying spike propagation within the lateral dendrites themselves.
哺乳动物嗅球(OB)的二尖瓣细胞(MCs)是主要神经元的两个群体之一(与中/深簇状细胞一起),它们将传入的嗅觉信息与自上而下的输入以及内在学习整合在一起,并将输出传递到下游嗅觉区域。MC的活动部分受颗粒细胞抑制的调节,颗粒细胞在其外侧树突的范围内与MC形成相互突触。然而,在大鼠中MC的外侧树突长度超过1.5毫米,远端抑制性突触的作用构成了一个难题。在这里,我们系统地改变MC模型的属性,以评估外侧树突上抑制性突触输入影响通过MC的传入信息流的能力。使用具有不同树突形态和突触特性的钝化模型进行的模拟表明,即使参数非常有利,被动传播也无法将有效的抑制信号从远端源传递到胞体。使用表现出动作电位、阈下振荡以及与实验值紧密匹配的树突形态的主动模型进行的额外模拟进一步证实,沿着外侧树突的远端突触输入无法对胞体处的MC尖峰时间产生生理相关的影响。代表多个同时输入的较大突触电导不足以补偿信号随距离的衰减。远端MC外侧树突上的相互突触可能反而通过延迟外侧树突自身内的尖峰传播,来维持整个OB的共同快速振荡时钟。