Salminen Antero, Kauppinen Anu, Kaarniranta Kai
Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.
School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland.
Cell Signal. 2016 Aug;28(8):887-95. doi: 10.1016/j.cellsig.2016.03.009. Epub 2016 Mar 20.
AMP-activated protein kinase (AMPK) and its yeast homolog, Snf1, are critical regulators in the maintenance of energy metabolic balance not only stimulating energy production but also inhibiting energy-consuming processes. The AMPK/Snf1 signaling controls energy metabolism by specific phosphorylation of many metabolic enzymes and transcription factors, enhancing or suppressing their functions. The AMPK/Snf1 complexes can be translocated from cytoplasm into nuclei where they are involved in the regulation of transcription. Recent studies have indicated that AMPK/Snf1 activation can control histone acetylation through different mechanisms affecting not only gene transcription but also many other epigenetic functions. For instance, AMPK/Snf1 enzymes can phosphorylate the histone H3S10 (yeast) and H2BS36 (mammalian) sites which activate specific histone acetyltransferases (HAT), consequently enhancing histone acetylation. Moreover, nuclear AMPK can phosphorylate type 2A histone deacetylases (HDAC), e.g. HDAC4 and HDAC5, triggering their export from nuclei thus promoting histone acetylation reactions. AMPK activation can also increase the level of acetyl CoA, e.g. by inhibiting fatty acid and cholesterol syntheses. Acetyl CoA is a substrate for HATs, thus increasing their capacity for histone acetylation. On the other hand, AMPK can stimulate the activity of nicotinamide phosphoribosyltransferase (NAMPT) which increases the level of NAD(+). NAD(+) is a substrate for nuclear sirtuins, especially for SIRT1 and SIRT6, which deacetylate histones and transcription factors, e.g. those regulating ribosome synthesis and circadian clocks. Histone acetylation is an important epigenetic modification which subsequently can affect chromatin remodeling, e.g. via bromodomain proteins. We will review the signaling mechanisms of AMPK/Snf1 in the control of histone acetylation and subsequently clarify their role in the epigenetic regulation of ribosome synthesis and circadian clocks.
AMP 激活的蛋白激酶(AMPK)及其酵母同源物 Snf1 是维持能量代谢平衡的关键调节因子,它们不仅刺激能量产生,还抑制能量消耗过程。AMPK/Snf1 信号通过对许多代谢酶和转录因子的特异性磷酸化来控制能量代谢,增强或抑制它们的功能。AMPK/Snf1 复合物可从细胞质转移到细胞核,参与转录调控。最近的研究表明,AMPK/Snf1 的激活可通过不同机制控制组蛋白乙酰化,不仅影响基因转录,还影响许多其他表观遗传功能。例如,AMPK/Snf1 酶可磷酸化组蛋白 H3S10(酵母)和 H2BS36(哺乳动物)位点,激活特定的组蛋白乙酰转移酶(HAT),从而增强组蛋白乙酰化。此外,核内的 AMPK 可磷酸化 2A 型组蛋白去乙酰化酶(HDAC),如 HDAC4 和 HDAC5,促使它们从细胞核输出,从而促进组蛋白乙酰化反应。AMPK 的激活还可通过抑制脂肪酸和胆固醇合成等方式增加乙酰辅酶 A 的水平。乙酰辅酶 A 是 HAT 的底物,从而提高它们进行组蛋白乙酰化的能力。另一方面,AMPK 可刺激烟酰胺磷酸核糖转移酶(NAMPT)的活性,从而提高 NAD⁺的水平。NAD⁺是核内去乙酰化酶的底物,特别是 SIRT1 和 SIRT6 的底物,这些酶可使组蛋白和转录因子去乙酰化,例如那些调节核糖体合成和生物钟的因子。组蛋白乙酰化是一种重要的表观遗传修饰,随后可影响染色质重塑,例如通过含溴结构域的蛋白质。我们将综述 AMPK/Snf1 在控制组蛋白乙酰化中的信号传导机制,并随后阐明它们在核糖体合成和生物钟的表观遗传调控中的作用。