Thijs Sofie, Sillen Wouter, Rineau Francois, Weyens Nele, Vangronsveld Jaco
Department of Biology, Centre for Environmental Sciences, Hasselt University Diepenbeek, Belgium.
Front Microbiol. 2016 Mar 16;7:341. doi: 10.3389/fmicb.2016.00341. eCollection 2016.
Phytoremediation is a promising technology to clean-up contaminated soils based on the synergistic actions of plants and microorganisms. However, to become a widely accepted, and predictable remediation alternative, a deeper understanding of the plant-microbe interactions is needed. A number of studies link the success of phytoremediation to the plant-associated microbiome functioning, though whether the microbiome can exist in alternative, functional states for soil remediation, is incompletely understood. Moreover, current approaches that target the plant host, and environment separately to improve phytoremediation, potentially overlook microbial functions and properties that are part of the multiscale complexity of the plant-environment wherein biodegradation takes place. In contrast, in situ studies of phytoremediation research at the metaorganism level (host and microbiome together) are lacking. Here, we discuss a competition-driven model, based on recent evidence from the metagenomics level, and hypotheses generated by microbial community ecology, to explain the establishment of a catabolic rhizosphere microbiome in a contaminated soil. There is evidence to ground that if the host provides the right level and mix of resources (exudates) over which the microbes can compete, then a competitive catabolic and plant-growth promoting (PGP) microbiome can be selected for as long as it provides a competitive superiority in the niche. The competition-driven model indicates four strategies to interfere with the microbiome. Specifically, the rhizosphere microbiome community can be shifted using treatments that alter the host, resources, environment, and that take advantage of prioritization in inoculation. Our model and suggestions, considering the metaorganism in its natural context, would allow to gain further knowledge on the plant-microbial functions, and facilitate translation to more effective, and predictable phytotechnologies.
植物修复是一项基于植物和微生物协同作用来清理受污染土壤的有前景的技术。然而,要成为一种被广泛接受且可预测的修复替代方法,需要更深入地了解植物与微生物之间的相互作用。许多研究将植物修复的成功与植物相关微生物群落的功能联系起来,尽管微生物群落是否能以替代的功能状态存在以用于土壤修复,目前还不完全清楚。此外,当前分别针对植物宿主和环境来改善植物修复的方法,可能忽略了作为生物降解发生的植物 - 环境多尺度复杂性一部分的微生物功能和特性。相比之下,在元生物体水平(宿主和微生物群落一起)对植物修复进行原位研究还很缺乏。在此,我们基于宏基因组学水平的最新证据以及微生物群落生态学提出的假设,讨论一个竞争驱动模型,以解释在受污染土壤中分解代谢根际微生物群落的建立。有证据表明,如果宿主提供微生物能够竞争的合适水平和资源组合(分泌物),那么只要在生态位中具有竞争优势,就可以选择出具有竞争性分解代谢和促进植物生长(PGP)的微生物群落。竞争驱动模型指出了四种干扰微生物群落的策略。具体而言,可以通过改变宿主、资源、环境以及利用接种优先级的处理方法来改变根际微生物群落。我们的模型和建议,考虑到自然环境中的元生物体,将有助于进一步了解植物 - 微生物功能,并促进向更有效、可预测的植物技术的转化。