Suppr超能文献

用于个性化癌症医学的整合网络建模方法。

Integrative network modeling approaches to personalized cancer medicine.

作者信息

Kidd Brian A, Readhead Ben P, Eden Caroline, Parekh Samir, Dudley Joel T

机构信息

Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Genomics & Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.

Department of Medicine Hematology & Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.

出版信息

Per Med. 2015 Jun 1;12(3):245-257. doi: 10.2217/pme.14.87.

Abstract

The ability to collect millions of molecular measurements from patients is a now a reality for clinical medicine. This reality has created the challenge of how to integrate these vast amounts of data into models that accurately predict complex pathophysiology and can translate this complexity into clinically actionable outputs. Integrative informatics and data-driven approaches provide a framework for analyzing large-scale datasets and combining them into multiscale models that can be used to determine the key drivers of disease and identify optimal therapies for treating tumors. In this perspective we discuss how an integrative modeling approach is being used to inform individual treatment decisions, highlighting a recent case report that illustrates the challenges and opportunities for personalized oncology.

摘要

从患者身上收集数百万分子测量数据的能力如今已成为临床医学的现实。这一现实带来了一个挑战,即如何将这些海量数据整合到能够准确预测复杂病理生理学并将这种复杂性转化为临床可操作输出的模型中。整合信息学和数据驱动方法提供了一个分析大规模数据集并将其组合成多尺度模型的框架,这些模型可用于确定疾病的关键驱动因素并识别治疗肿瘤的最佳疗法。在这篇观点文章中,我们讨论了整合建模方法如何用于指导个体治疗决策,并重点介绍了一份近期的病例报告,该报告阐述了个性化肿瘤学面临的挑战与机遇。

相似文献

1
Integrative network modeling approaches to personalized cancer medicine.
Per Med. 2015 Jun 1;12(3):245-257. doi: 10.2217/pme.14.87.
2
A new neuroinformatics approach to personalized medicine in neurology: The Virtual Brain.
Curr Opin Neurol. 2016 Aug;29(4):429-36. doi: 10.1097/WCO.0000000000000344.
4
Predictive genomics: a cancer hallmark network framework for predicting tumor clinical phenotypes using genome sequencing data.
Semin Cancer Biol. 2015 Feb;30:4-12. doi: 10.1016/j.semcancer.2014.04.002. Epub 2014 Apr 18.
5
Personalized medicine: elusive dream or imminent reality?
Clin Pharmacol Ther. 2007 Jun;81(6):807-16. doi: 10.1038/sj.clpt.6100204.
7
Cancer modeling and network biology: accelerating toward personalized medicine.
Semin Cancer Biol. 2015 Feb;30:1-3. doi: 10.1016/j.semcancer.2014.06.005. Epub 2014 Jun 24.
8
Genomic medicine frontier in human solid tumors: prospects and challenges.
J Clin Oncol. 2013 May 20;31(15):1874-84. doi: 10.1200/JCO.2012.45.2268. Epub 2013 Apr 15.
9
Integrative methods for analyzing big data in precision medicine.
Proteomics. 2016 Mar;16(5):741-58. doi: 10.1002/pmic.201500396.
10
Genetic Testing and Tissue Banking for Personalized Oncology: Analytical and Institutional Factors.
Semin Oncol. 2015 Oct;42(5):713-23. doi: 10.1053/j.seminoncol.2015.07.013. Epub 2015 Jul 14.

引用本文的文献

1
Adenosine Metabolism: Emerging Concepts for Cancer Therapy.
Cancer Cell. 2019 Dec 9;36(6):582-596. doi: 10.1016/j.ccell.2019.10.007.
2
AI in Health: State of the Art, Challenges, and Future Directions.
Yearb Med Inform. 2019 Aug;28(1):16-26. doi: 10.1055/s-0039-1677908. Epub 2019 Aug 16.
3
Integrative Approaches to Cancer Immunotherapy.
Trends Cancer. 2019 Jul;5(7):400-410. doi: 10.1016/j.trecan.2019.05.010.
4
Network-based machine learning and graph theory algorithms for precision oncology.
NPJ Precis Oncol. 2017 Aug 8;1(1):25. doi: 10.1038/s41698-017-0029-7. eCollection 2017.
5
Cancer Immunotherapy and Personalized Medicine: Emerging Technologies and Biomarker-Based Approaches.
J Mol Biomark Diagn. 2017 Sep;8(5). doi: 10.4172/2155-9929.1000350. Epub 2017 Jun 28.
6
Overcoming multiple myeloma drug resistance in the era of cancer 'omics'.
Leuk Lymphoma. 2018 Mar;59(3):542-561. doi: 10.1080/10428194.2017.1337115. Epub 2017 Jun 13.

本文引用的文献

1
Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry.
Nat Methods. 2014 Apr;11(4):417-22. doi: 10.1038/nmeth.2869. Epub 2014 Mar 2.
2
Multiplexed ion beam imaging of human breast tumors.
Nat Med. 2014 Apr;20(4):436-42. doi: 10.1038/nm.3488. Epub 2014 Mar 2.
4
Unifying immunology with informatics and multiscale biology.
Nat Immunol. 2014 Feb;15(2):118-27. doi: 10.1038/ni.2787.
5
Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy.
Cancer Cell. 2014 Jan 13;25(1):91-101. doi: 10.1016/j.ccr.2013.12.015.
7
Discovery and saturation analysis of cancer genes across 21 tumour types.
Nature. 2014 Jan 23;505(7484):495-501. doi: 10.1038/nature12912. Epub 2014 Jan 5.
9
The NHGRI GWAS Catalog, a curated resource of SNP-trait associations.
Nucleic Acids Res. 2014 Jan;42(Database issue):D1001-6. doi: 10.1093/nar/gkt1229. Epub 2013 Dec 6.
10
Minimal residual disease monitoring with high-throughput sequencing of T cell receptors in cutaneous T cell lymphoma.
Sci Transl Med. 2013 Dec 4;5(214):214ra171. doi: 10.1126/scitranslmed.3007420.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验