Suppr超能文献

癌症免疫治疗的综合方法

Integrative Approaches to Cancer Immunotherapy.

作者信息

Szeto Gregory L, Finley Stacey D

机构信息

Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA.

Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, DRB 140, Los Angeles, CA 90089, USA; Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, 925 Bloom Walk, HED 216, Los Angeles, CA 90089, USA; Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, AHF 107, Los Angeles, CA 90089, USA.

出版信息

Trends Cancer. 2019 Jul;5(7):400-410. doi: 10.1016/j.trecan.2019.05.010.

Abstract

Cancer immunotherapy aims to arm patients with cancer-fighting immunity. Many new cancer-specific immunotherapeutic drugs have gained approval in the past several years, demonstrating immunotherapy's efficacy and promise as an anticancer modality. Despite these successes, several outstanding questions remain for cancer immunotherapy, including how to make immunotherapy more efficacious in a broader range of cancer types and patients, and how to predict which patients will respond or not respond to therapy. We present a case for integrative systems approaches that will answer these questions. This involves applying mechanistic and statistical modeling, establishing consistent and widely adopted experimental tools to generate systems-level data, and creating sustained mechanisms of support. If implemented, these approaches will lead to major advances in cancer treatment.

摘要

癌症免疫疗法旨在使患者具备抗癌免疫力。在过去几年中,许多新型癌症特异性免疫治疗药物已获批准,这证明了免疫疗法作为一种抗癌方式的有效性和前景。尽管取得了这些成功,但癌症免疫疗法仍存在几个突出问题,包括如何使免疫疗法在更广泛的癌症类型和患者中更有效,以及如何预测哪些患者会对治疗有反应或无反应。我们提出了一种综合系统方法来回答这些问题。这包括应用机制和统计建模,建立一致且广泛采用的实验工具以生成系统层面的数据,以及创建持续的支持机制。如果得以实施,这些方法将引领癌症治疗取得重大进展。

相似文献

1
Integrative Approaches to Cancer Immunotherapy.癌症免疫治疗的综合方法
Trends Cancer. 2019 Jul;5(7):400-410. doi: 10.1016/j.trecan.2019.05.010.
4
NY-ESO-1 Based Immunotherapy of Cancer: Current Perspectives.基于 NY-ESO-1 的癌症免疫治疗:当前观点。
Front Immunol. 2018 May 1;9:947. doi: 10.3389/fimmu.2018.00947. eCollection 2018.
6
Adapting conventional cancer treatment for immunotherapy.使传统癌症治疗适应免疫疗法。
J Mol Med (Berl). 2016 May;94(5):489-95. doi: 10.1007/s00109-016-1393-4. Epub 2016 Feb 24.
7
Bioinformatics for cancer immunology and immunotherapy.癌症免疫学和免疫治疗的生物信息学。
Cancer Immunol Immunother. 2012 Nov;61(11):1885-903. doi: 10.1007/s00262-012-1354-x. Epub 2012 Sep 18.
10
From concept to clinic: Mathematically informed immunotherapy.从概念到临床:数学助力的免疫疗法。
Curr Probl Cancer. 2016 Jan-Feb;40(1):68-83. doi: 10.1016/j.currproblcancer.2015.10.004. Epub 2015 Oct 8.

引用本文的文献

6
Bibliometric analysis of global research trends in pancreatic cancer immunotherapy.胰腺癌免疫治疗全球研究趋势的文献计量分析
Hum Vaccin Immunother. 2025 Dec;21(1):2538330. doi: 10.1080/21645515.2025.2538330. Epub 2025 Jul 24.

本文引用的文献

7
Immunotherapy transforms cancer treatment.免疫疗法改变了癌症治疗方式。
J Clin Invest. 2019 Jan 2;129(1):46-47. doi: 10.1172/JCI126046. Epub 2018 Dec 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验