Suppr超能文献

在移动机器人平台上使用深度学习算法进行实时生物多样性分析。

Real-time biodiversity analysis using deep-learning algorithms on mobile robotic platforms.

作者信息

Panigrahi Siddhant, Maski Prajwal, Thondiyath Asokan

机构信息

Department of Engineering Design, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India.

出版信息

PeerJ Comput Sci. 2023 Aug 25;9:e1502. doi: 10.7717/peerj-cs.1502. eCollection 2023.

Abstract

Ecological biodiversity is declining at an unprecedented rate. To combat such irreversible changes in natural ecosystems, biodiversity conservation initiatives are being conducted globally. However, the lack of a feasible methodology to quantify biodiversity in real-time and investigate population dynamics in spatiotemporal scales prevents the use of ecological data in environmental planning. Traditionally, ecological studies rely on the census of an animal population by the "capture, mark and recapture" technique. In this technique, human field workers manually count, tag and observe tagged individuals, making it time-consuming, expensive, and cumbersome to patrol the entire area. Recent research has also demonstrated the potential for inexpensive and accessible sensors for ecological data monitoring. However, stationary sensors collect localised data which is highly specific on the placement of the setup. In this research, we propose the methodology for biodiversity monitoring utilising state-of-the-art deep learning (DL) methods operating in real-time on sample payloads of mobile robots. Such trained DL algorithms demonstrate a mean average precision (mAP) of 90.51% in an average inference time of 67.62 milliseconds within 6,000 training epochs. We claim that the use of such mobile platform setups inferring real-time ecological data can help us achieve our goal of quick and effective biodiversity surveys. An experimental test payload is fabricated, and online as well as offline field surveys are conducted, validating the proposed methodology for species identification that can be further extended to geo-localisation of flora and fauna in any ecosystem.

摘要

生态生物多样性正以前所未有的速度下降。为应对自然生态系统中这种不可逆转的变化,全球正在开展生物多样性保护倡议。然而,缺乏一种可行的方法来实时量化生物多样性并在时空尺度上调查种群动态,这阻碍了生态数据在环境规划中的应用。传统上,生态学研究依靠“捕获、标记和重捕”技术对动物种群进行普查。在这种技术中,人类野外工作者手动计数、标记并观察被标记的个体,这使得在整个区域进行巡逻既耗时、昂贵又麻烦。最近的研究还展示了使用廉价且易于获取的传感器进行生态数据监测的潜力。然而,固定传感器收集的是局部数据,这些数据对设置的位置高度特定。在本研究中,我们提出了利用最先进的深度学习(DL)方法对移动机器人的样本负载进行实时操作的生物多样性监测方法。在6000个训练轮次内,此类经过训练的DL算法在平均推理时间为67.62毫秒的情况下,平均精度均值(mAP)为90.51%。我们声称,使用这种推断实时生态数据的移动平台设置有助于我们实现快速有效的生物多样性调查目标。制作了一个实验测试负载,并进行了在线和离线实地调查,验证了所提出的物种识别方法,该方法可进一步扩展到任何生态系统中动植物的地理定位。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02e4/10495972/e5ce6d512277/peerj-cs-09-1502-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验