Suppr超能文献

线粒体活性氧在植物细胞信号传导和应激反应中的作用

The Roles of Mitochondrial Reactive Oxygen Species in Cellular Signaling and Stress Response in Plants.

作者信息

Huang Shaobai, Van Aken Olivier, Schwarzländer Markus, Belt Katharina, Millar A Harvey

机构信息

ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia (S.H., O.V.A., K.B., A.H.M.); andPlant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany (M.S.).

ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia (S.H., O.V.A., K.B., A.H.M.); andPlant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany (M.S.)

出版信息

Plant Physiol. 2016 Jul;171(3):1551-9. doi: 10.1104/pp.16.00166. Epub 2016 Mar 28.

Abstract

Mitochondria produce ATP via respiratory oxidation of organic acids and transfer of electrons to O2 via the mitochondrial electron transport chain. This process produces reactive oxygen species (ROS) at various rates that can impact respiratory and cellular function, affecting a variety of signaling processes in the cell. Roles in redox signaling, retrograde signaling, plant hormone action, programmed cell death, and defense against pathogens have been attributed to ROS generated in plant mitochondria (mtROS). The shortcomings of the black box-idea of mtROS are discussed in the context of mechanistic considerations and the measurement of mtROS The overall aim of this update is to better define our current understanding of mtROS and appraise their potential influence on cellular function in plants. Furthermore, directions for future research are provided, along with suggestions to increase reliability of mtROS measurements.

摘要

线粒体通过有机酸的呼吸氧化作用产生ATP,并通过线粒体电子传递链将电子传递给O2。这个过程以不同的速率产生活性氧(ROS),这些ROS会影响呼吸和细胞功能,进而影响细胞内的各种信号传导过程。植物线粒体产生的ROS(mtROS)在氧化还原信号传导、逆行信号传导、植物激素作用、程序性细胞死亡和病原体防御中发挥作用。本文结合机制考量和mtROS的测量方法,讨论了mtROS黑箱概念的不足之处。本次更新的总体目标是更好地界定我们目前对mtROS的理解,并评估它们对植物细胞功能的潜在影响。此外,还提供了未来研究的方向,以及提高mtROS测量可靠性的建议。

相似文献

3
Reactive oxygen species in plant development.植物发育中的活性氧。
Development. 2018 Aug 9;145(15):dev164376. doi: 10.1242/dev.164376.
6
Mitochondria-meditated pathways of organ failure upon inflammation.线粒体介导的炎症致器官衰竭途径。
Redox Biol. 2017 Oct;13:170-181. doi: 10.1016/j.redox.2017.05.017. Epub 2017 May 25.
9
Generator-specific targets of mitochondrial reactive oxygen species.线粒体活性氧的特异性生成靶标。
Free Radic Biol Med. 2015 Jan;78:1-10. doi: 10.1016/j.freeradbiomed.2014.10.511. Epub 2014 Oct 29.
10

引用本文的文献

本文引用的文献

2
Mitochondrial Dynamics and the ER: The Plant Perspective.线粒体动态与内质网:植物视角。
Front Cell Dev Biol. 2015 Dec 23;3:78. doi: 10.3389/fcell.2015.00078. eCollection 2015.
8
Licensed to Kill: Mitochondria, Chloroplasts, and Cell Death.许可的杀戮:线粒体、叶绿体和细胞死亡。
Trends Plant Sci. 2015 Nov;20(11):754-766. doi: 10.1016/j.tplants.2015.08.002. Epub 2015 Oct 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验