School of Chemistry and Chemical Engineering, University of Jinan , Jinan 250022, P. R. China.
Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan , Jinan 250022, P. R. China.
Anal Chem. 2016 May 17;88(10):5369-77. doi: 10.1021/acs.analchem.6b00693. Epub 2016 Apr 25.
In this work, a novel dual photoelectrochemical/colorimetric cyto-analysis format was first introduced into a microfluidic paper-based analytical device (μ-PAD) for synchronous sensitive and visual detection of H2O2 released from tumor cells based on an in situ hydroxyl radicals ((•)OH) cleaving DNA approach. The resulted μ-PAD offered an excellent platform for high-performance biosensing applications, which was constructed by a layer-by-layer modification of concanavalin A, graphene quantum dots (GQDs) labeled flower-like Au@Pd alloy nanoparticles (NPs) probe, and tumor cells on the surface of the vertically aligned bamboo like ZnO, which grows on a pyknotic Pt NPs modified paper working electrode (ZnO/Pt-PWE). It was the effective matching of energy levels between GQDs and ZnO levels that lead to the enhancement of the photocurrent response compared with the bare ZnO/Pt-PWE. After releasing H2O2, the DNA strand was cleaved by (•)OH generated under the synergistic catalysis of GQDs and Au@Pd alloy NPs and thus, reduced the photocurrent, resulting in a high sensitivity to H2O2 in aqueous solutions with a detection limit of 0.05 nmol observed, much lower than that in the previously reported method. The disengaged probe can result in catalytic chromogenic reaction of substrates, resulting in real-time imaging of H2O2 biological processes. Therefore, this work provided a truly low-cost, simple, and disposable μ-PAD for precise and visual detection of cellular H2O2, which had potential utility to cellular biology and pathophysiology.
在这项工作中,首次将一种新型的双光电化学/比色细胞分析格式引入到微流控纸基分析装置(μ-PAD)中,用于基于原位羟基自由基(•OH)切割 DNA 方法同步灵敏和可视化检测肿瘤细胞释放的 H2O2。所得到的μ-PAD 提供了一个用于高性能生物传感应用的优秀平台,该平台通过层叠修饰刀豆球蛋白 A、标记有花状 Au@Pd 合金纳米粒子(NPs)探针的石墨烯量子点(GQDs),以及在垂直排列的竹状 ZnO 表面上的肿瘤细胞构建而成,该 ZnO 生长在一个致密 Pt NPs 修饰的纸工作电极(ZnO/Pt-PWE)上。正是 GQDs 和 ZnO 能级之间的有效能级匹配导致与裸 ZnO/Pt-PWE 相比,光电流响应得到增强。释放 H2O2 后,DNA 链在 GQDs 和 Au@Pd 合金 NPs 的协同催化作用下被(•OH)切割,从而减少光电流,导致在水溶液中对 H2O2 具有高灵敏度,检测限为 0.05 nmol,远低于先前报道的方法。分离的探针可以导致底物的催化显色反应,从而实时成像 H2O2 生物过程。因此,这项工作为精确和可视化检测细胞 H2O2 提供了一种真正低成本、简单和一次性的 μ-PAD,具有细胞生物学和病理生理学的潜在应用价值。
Biosens Bioelectron. 2016-11-11
Nanomaterials (Basel). 2022-5-27
Nanomaterials (Basel). 2022-4-26
Sensors (Basel). 2020-2-16