Suppr超能文献

接受治疗的肺癌患者血清代谢物特征的时间特征分析。

Temporal characterization of serum metabolite signatures in lung cancer patients undergoing treatment.

作者信息

Hao Desirée, Sarfaraz M Omair, Farshidfar Farshad, Bebb D Gwyn, Lee Camelia Y, Card Cynthia M, David Marilyn, Weljie Aalim M

机构信息

Department of Medical Oncology, Tom Baker Cancer Centre and Cumming School of Medicine, University of Calgary, 1331-29th Street N.W., Calgary, AB T2N 4N2 Canada.

Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4 Canada.

出版信息

Metabolomics. 2016;12:58. doi: 10.1007/s11306-016-0961-5. Epub 2016 Feb 27.

Abstract

Lung cancer causes more deaths in men and women than any other cancer related disease. Currently, few effective strategies exist to predict how patients will respond to treatment. We evaluated the serum metabolomic profiles of 25 lung cancer patients undergoing chemotherapy ± radiation to evaluate the feasibility of metabolites as temporal biomarkers of clinical outcomes. Serial serum specimens collected prospectively from lung cancer patients were analyzed using both nuclear magnetic resonance (H-NMR) spectroscopy and gas chromatography mass spectrometry (GC-MS). Multivariate statistical analysis consisted of unsupervised principal component analysis or orthogonal partial least squares discriminant analysis with significance assessed using a cross-validated ANOVA. The metabolite profiles were reflective of the temporal distinction between patient samples before during and after receiving therapy (H-NMR, p < 0.001: and GC-MS p < 0.01). Disease progression and survival were strongly correlative with the GC-MS metabolite data whereas stage and cancer type were associated with H-NMR data. Metabolites such as hydroxylamine, tridecan-1-ol, octadecan-1-ol, were indicative of survival (GC-MS p < 0.05) and metabolites such as tagatose, hydroxylamine, glucopyranose, and threonine that were reflective of progression (GC-MS p < 0.05). Metabolite profiles have the potential to act as prognostic markers of clinical outcomes for lung cancer patients. Serial H-NMR measurements appear to detect metabolites diagnostic of tumor pathology, while GC-MS provided data better related to prognostic clinical outcomes, possibility due to physiochemical bias related to specific biochemical pathways. These results warrant further study in a larger cohort and with various treatment options.

摘要

肺癌导致的男性和女性死亡人数超过任何其他癌症相关疾病。目前,几乎没有有效的策略来预测患者对治疗的反应。我们评估了25名接受化疗±放疗的肺癌患者的血清代谢组学谱,以评估代谢物作为临床结局的时间生物标志物的可行性。使用核磁共振(H-NMR)光谱和气相色谱-质谱联用(GC-MS)对前瞻性收集的肺癌患者的系列血清标本进行分析。多变量统计分析包括无监督主成分分析或正交偏最小二乘判别分析,使用交叉验证的方差分析评估显著性。代谢物谱反映了患者样本在接受治疗前、治疗期间和治疗后的时间差异(H-NMR,p<0.001;GC-MS,p<0.01)。疾病进展和生存率与GC-MS代谢物数据密切相关,而分期和癌症类型与H-NMR数据相关。诸如羟胺、十三烷-1-醇、十八烷-1-醇等代谢物表明生存情况(GC-MS,p<0.05),而诸如塔格糖、羟胺、吡喃葡萄糖和苏氨酸等代谢物反映疾病进展(GC-MS.p<0.05)。代谢物谱有可能作为肺癌患者临床结局的预后标志物。系列H-NMR测量似乎能检测出诊断肿瘤病理的代谢物,而GC-MS提供的数据与预后临床结局的相关性更好,这可能是由于与特定生化途径相关的物理化学偏差。这些结果值得在更大的队列中以及采用各种治疗方案进行进一步研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f54/4819600/9b6f010e522f/11306_2016_961_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验