Suppr超能文献

运动与体育科学中小效应的贝叶斯估计

Bayesian Estimation of Small Effects in Exercise and Sports Science.

作者信息

Mengersen Kerrie L, Drovandi Christopher C, Robert Christian P, Pyne David B, Gore Christopher J

机构信息

Science and Engineering Faculty, Mathematical Sciences, and Institute for Future Environments, Queensland University of Technology, Brisbane, Australia.

Australian Research Council Centre of Excellence in Mathematical and Statistical Frontiers in Big Data, Big Models and New Insights, Brisbane, Australia.

出版信息

PLoS One. 2016 Apr 13;11(4):e0147311. doi: 10.1371/journal.pone.0147311. eCollection 2016.

Abstract

The aim of this paper is to provide a Bayesian formulation of the so-called magnitude-based inference approach to quantifying and interpreting effects, and in a case study example provide accurate probabilistic statements that correspond to the intended magnitude-based inferences. The model is described in the context of a published small-scale athlete study which employed a magnitude-based inference approach to compare the effect of two altitude training regimens (live high-train low (LHTL), and intermittent hypoxic exposure (IHE)) on running performance and blood measurements of elite triathletes. The posterior distributions, and corresponding point and interval estimates, for the parameters and associated effects and comparisons of interest, were estimated using Markov chain Monte Carlo simulations. The Bayesian analysis was shown to provide more direct probabilistic comparisons of treatments and able to identify small effects of interest. The approach avoided asymptotic assumptions and overcame issues such as multiple testing. Bayesian analysis of unscaled effects showed a probability of 0.96 that LHTL yields a substantially greater increase in hemoglobin mass than IHE, a 0.93 probability of a substantially greater improvement in running economy and a greater than 0.96 probability that both IHE and LHTL yield a substantially greater improvement in maximum blood lactate concentration compared to a Placebo. The conclusions are consistent with those obtained using a 'magnitude-based inference' approach that has been promoted in the field. The paper demonstrates that a fully Bayesian analysis is a simple and effective way of analysing small effects, providing a rich set of results that are straightforward to interpret in terms of probabilistic statements.

摘要

本文旨在为所谓的基于量级的推理方法提供一种贝叶斯公式,以量化和解释效应,并在一个案例研究示例中提供与预期的基于量级的推理相对应的准确概率陈述。该模型是在一项已发表的小规模运动员研究的背景下进行描述的,该研究采用基于量级的推理方法来比较两种高原训练方案(高住低练(LHTL)和间歇性低氧暴露(IHE))对精英铁人三项运动员跑步成绩和血液测量指标的影响。使用马尔可夫链蒙特卡罗模拟估计了参数、相关效应以及感兴趣的比较的后验分布,以及相应的点估计和区间估计。结果表明,贝叶斯分析能够提供更直接的治疗概率比较,并能够识别感兴趣的小效应。该方法避免了渐近假设,克服了多重检验等问题。对未缩放效应的贝叶斯分析表明,LHTL使血红蛋白量大幅增加的概率为0.96,即LHTL比IHE使血红蛋白量大幅增加的概率为0.96;跑步经济性大幅改善的概率为0.93;与安慰剂相比,IHE和LHTL使最大血乳酸浓度大幅改善的概率均大于0.96。这些结论与该领域中推广的“基于量级的推理”方法所得出的结论一致。本文表明,完全贝叶斯分析是分析小效应的一种简单有效的方法,它提供了一组丰富的结果,这些结果根据概率陈述很容易解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5c2/4830602/6cfdc00a77d2/pone.0147311.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验