Yin Zhifu, Qi Liping, Zou Helin, Sun Lei, Xu Shenbo
Key Laboratory for Micro/Nano Technology and Systems of Liaoning Province, Dalian University of Technology, Dalian 116024, People's Republic of China.
Department of Biomedical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China.
IET Nanobiotechnol. 2016 Apr;10(2):75-80. doi: 10.1049/iet-nbt.2015.0045.
Plastic nanofluidic devices are becoming increasingly important for biological and chemical applications. However, they suffer from high auto-fluorescence when used for on-chip optical detection. In this study, the auto-fluorescence problem of plastic nanofluidic devices was remedied by newly developed fabrication methods that minimise their auto-fluorescence: one by depositing a gold (Au) layer on them, the other by making them ultra-thin. In the first method, the Au layer [minimum thickness is 40 nm on 150 μm SU-8, 50 nm on 1 mm polyethylene terephthalate (PET), and 40 on 2 nm polymethyl methacrylate (PMMA)] blocks the auto-fluorescence of the polymer; in the second method, auto-fluorescence is minimised by making the chips ultra-thin, selected operating thickness of SU-8 is 20 μm, for PET it is 150 μm, and for PMMA it is 0.8 mm.
塑料纳米流体装置在生物和化学应用中变得越来越重要。然而,当用于芯片上的光学检测时,它们存在高自发荧光问题。在本研究中,通过新开发的制造方法解决了塑料纳米流体装置的自发荧光问题,这些方法将其自发荧光降至最低:一种是在其上沉积金(Au)层,另一种是使其超薄。在第一种方法中,Au层[在150μm的SU-8上最小厚度为40nm,在1mm的聚对苯二甲酸乙二醇酯(PET)上为50nm,在2nm的聚甲基丙烯酸甲酯(PMMA)上为40nm]阻挡了聚合物的自发荧光;在第二种方法中,通过使芯片超薄将自发荧光降至最低,SU-8的选定工作厚度为20μm,PET为150μm,PMMA为0.8mm。