Suppr超能文献

用于制造聚甲基丙烯酸甲酯(PMMA)和环烯烃共聚物(COP)微流控器件的溶剂键合

Solvent Bonding for Fabrication of PMMA and COP Microfluidic Devices.

作者信息

Wan Alwin M D, Moore Thomas A, Young Edmond W K

机构信息

Department of Mechanical & Industrial Engineering, University of Toronto.

Department of Mechanical & Industrial Engineering, University of Toronto; Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto.

出版信息

J Vis Exp. 2017 Jan 17(119):55175. doi: 10.3791/55175.

Abstract

Thermoplastic microfluidic devices offer many advantages over those made from silicone elastomers, but bonding procedures must be developed for each thermoplastic of interest. Solvent bonding is a simple and versatile method that can be used to fabricate devices from a variety of plastics. An appropriate solvent is added between two device layers to be bonded, and heat and pressure are applied to the device to facilitate the bonding. By using an appropriate combination of solvent, plastic, heat, and pressure, the device can be sealed with a high quality bond, characterized as having high bond coverage, bond strength, optical clarity, durability over time, and low deformation or damage to microfeature geometry. We describe the procedure for bonding devices made from two popular thermoplastics, poly(methyl-methacrylate) (PMMA), and cyclo-olefin polymer (COP), as well as a variety of methods to characterize the quality of the resulting bonds, and strategies to troubleshoot low quality bonds. These methods can be used to develop new solvent bonding protocols for other plastic-solvent systems.

摘要

热塑性微流控设备相比由硅橡胶制成的设备具有许多优势,但必须为每种感兴趣的热塑性材料开发键合程序。溶剂键合是一种简单且通用的方法,可用于由多种塑料制造设备。在两个要键合的设备层之间添加适当的溶剂,然后对设备施加 heat 和压力以促进键合。通过使用溶剂、塑料、heat 和压力的适当组合,可以用高质量的键合密封设备,其特征在于具有高键合覆盖率、键合强度、光学清晰度、随时间的耐久性以及对微特征几何形状的低变形或损坏。我们描述了由两种常用热塑性材料聚甲基丙烯酸甲酯 (PMMA) 和环烯烃聚合物 (COP) 制成的设备的键合程序,以及表征所得键合质量的各种方法,以及对低质量键合进行故障排除的策略。这些方法可用于为其他塑料 - 溶剂系统开发新的溶剂键合方案。

相似文献

1
Solvent Bonding for Fabrication of PMMA and COP Microfluidic Devices.
J Vis Exp. 2017 Jan 17(119):55175. doi: 10.3791/55175.
2
Thermal assisted ultrasonic bonding method for poly(methyl methacrylate) (PMMA) microfluidic devices.
Talanta. 2010 Jun 15;81(4-5):1331-8. doi: 10.1016/j.talanta.2010.02.031. Epub 2010 Feb 13.
3
Rapid prototyping of poly(methyl methacrylate) microfluidic systems using solvent imprinting and bonding.
J Chromatogr A. 2007 Aug 31;1162(2):162-6. doi: 10.1016/j.chroma.2007.04.002. Epub 2007 Apr 8.
6
Solvent bonding of poly(methyl methacrylate) microfluidic chip using phase-changing agar hydrogel as a sacrificial layer.
Electrophoresis. 2011 Nov;32(23):3319-23. doi: 10.1002/elps.201100436. Epub 2011 Nov 10.
7
Thermoplastic fusion bonding using a pressure-assisted boiling point control system.
Lab Chip. 2012 Aug 21;12(16):2799-802. doi: 10.1039/c2lc40252a. Epub 2012 Jun 22.
9
Simple room temperature bonding of thermoplastics and poly(dimethylsiloxane).
Lab Chip. 2011 Mar 7;11(5):962-5. doi: 10.1039/c0lc00272k. Epub 2010 Dec 8.
10
Microfluidic device fabrication by thermoplastic hot-embossing.
Methods Mol Biol. 2013;949:115-23. doi: 10.1007/978-1-62703-134-9_8.

引用本文的文献

2
Double-Sided Tape in Microfluidics: A Cost-Effective Method in Device Fabrication.
Biosensors (Basel). 2024 May 15;14(5):249. doi: 10.3390/bios14050249.
3
Bonding Strategies for Thermoplastics Applicable for Bioanalysis and Diagnostics.
Micromachines (Basel). 2022 Sep 10;13(9):1503. doi: 10.3390/mi13091503.
4
Microwave-Assisted Solvent Bonding for Polymethyl Methacrylate Microfluidic Device.
Micromachines (Basel). 2022 Jul 17;13(7):1131. doi: 10.3390/mi13071131.
5
Recent Advances in Thermoplastic Microfluidic Bonding.
Micromachines (Basel). 2022 Mar 20;13(3):486. doi: 10.3390/mi13030486.
6
Microfluidic Bioreactor Made of Cyclo-Olefin Polymer for Observing On-Chip Platelet Production.
Micromachines (Basel). 2021 Oct 15;12(10):1253. doi: 10.3390/mi12101253.
8
Screening Estrogen Receptor Modulators in a Paper-Based Breast Cancer Model.
Anal Chem. 2018 Oct 16;90(20):11981-11988. doi: 10.1021/acs.analchem.8b02486. Epub 2018 Oct 4.

本文引用的文献

2
Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices.
Lab Chip. 2015 Jun 7;15(11):2364-78. doi: 10.1039/c5lc00234f.
3
The present and future role of microfluidics in biomedical research.
Nature. 2014 Mar 13;507(7491):181-9. doi: 10.1038/nature13118.
4
Microfluidic device fabrication by thermoplastic hot-embossing.
Methods Mol Biol. 2013;949:115-23. doi: 10.1007/978-1-62703-134-9_8.
5
Assessment of enhanced autofluorescence and impact on cell microscopy for microfabricated thermoplastic devices.
Anal Chem. 2013 Jan 2;85(1):44-9. doi: 10.1021/ac3034773. Epub 2012 Dec 18.
6
Engineers are from PDMS-land, Biologists are from Polystyrenia.
Lab Chip. 2012 Apr 7;12(7):1224-37. doi: 10.1039/c2lc20982a. Epub 2012 Feb 8.
7
Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane).
Anal Chem. 1998 Dec 1;70(23):4974-84. doi: 10.1021/ac980656z.
8
Rapid prototyping of arrayed microfluidic systems in polystyrene for cell-based assays.
Anal Chem. 2011 Feb 15;83(4):1408-17. doi: 10.1021/ac102897h. Epub 2011 Jan 24.
9
Fundamentals of microfluidic cell culture in controlled microenvironments.
Chem Soc Rev. 2010 Mar;39(3):1036-48. doi: 10.1039/b909900j. Epub 2010 Feb 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验