Pagani Marco, Damiano Mario, Galbusera Alberto, Tsaftaris Sotirios A, Gozzi Alessandro
Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto (TN), Italy; Centro Interdipartimentale Mente/Cervello (CIMeC)-University of Trento, Rovereto (TN), Italy.
Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto (TN), Italy.
J Neurosci Methods. 2016 Jul 15;267:62-73. doi: 10.1016/j.jneumeth.2016.04.007. Epub 2016 Apr 11.
Morphoanatomical MRI methods have recently begun to be applied in the mouse. However, substantial differences in the anatomical organisation of human and rodent brain prevent a straightforward extension of clinical neuroimaging tools to mouse brain imaging. As a result, the vast majority of the published approaches rely on tailored routines that address single morphoanatomical readouts and typically lack a sufficiently-detailed description of the complex workflow required to process images and quantify structural alterations.
Here we provide a detailed description of semi-automated registration-based procedures for voxel based morphometry, cortical thickness estimation and automated anatomical labelling of the mouse brain. The approach relies on the sequential use of advanced image processing tools offered by ANTs, a flexible open source toolkit freely available to the scientific community.
To illustrate our procedures, we described their application to quantify morphological alterations in socially-impaired BTBR mice with respect to normosocial C57BL/6J controls, a comparison recently described by us and other research groups. We show that the approach can reliably detect both focal and large-scale grey matter alterations using complementary readouts.
No detailed operational workflows for mouse imaging are available for direct comparison with our methods. However, empirical assessment of the mapped inter-strain differences is in good agreement with the findings of other groups using analogous approaches.
The detailed operational workflows described here are expected to help the implementation of rodent morphoanatomical methods by non-expert users, and ultimately promote the use of these tools across the preclinical neuroimaging community.
形态解剖学磁共振成像方法最近已开始应用于小鼠。然而,人类和啮齿动物大脑在解剖结构上存在显著差异,这使得临床神经成像工具无法直接扩展到小鼠脑成像。因此,绝大多数已发表的方法都依赖于针对单一形态解剖学读数的定制程序,并且通常缺乏对处理图像和量化结构改变所需的复杂工作流程的充分详细描述。
在此,我们详细描述了基于半自动配准的程序,用于基于体素的形态测量、皮质厚度估计以及小鼠脑的自动解剖标记。该方法依赖于ANTs提供的先进图像处理工具的顺序使用,ANTs是一个灵活的开源工具包,科学界可免费使用。
为了说明我们的程序,我们描述了它们在量化社交受损的BTBR小鼠相对于正常社交的C57BL/6J对照的形态学改变中的应用,这是我们和其他研究小组最近描述的一种比较。我们表明,该方法可以使用互补读数可靠地检测局灶性和大规模灰质改变。
没有用于小鼠成像的详细操作工作流程可与我们的方法进行直接比较。然而,对映射的品系间差异的实证评估与其他使用类似方法的小组的发现高度一致。
这里描述的详细操作工作流程有望帮助非专业用户实施啮齿动物形态解剖学方法,并最终促进这些工具在临床前神经成像社区中的使用。