Suppr超能文献

在微通道中具有收缩的血流中血小板传输的亚细胞建模。

Sub-cellular modeling of platelet transport in blood flow through microchannels with constriction.

机构信息

Division of Applied Mathematics, Brown University, Providence, RI 02912, USA.

出版信息

Soft Matter. 2016 May 11;12(19):4339-51. doi: 10.1039/c6sm00154h.

Abstract

Platelet transport through arterial constrictions is one of the controlling processes influencing their adhesive functions and the formation of thrombi. We perform high-fidelity mesoscopic simulations of blood flow in microchannels with constriction, resembling arterial stenoses. The wall shear rates inside the constrictions reach levels as high as ≈8000 s(-1), similar to those encountered in moderate atherosclerotic plaques. Both red blood cells and platelets are resolved at sub-cellular resolution using the Dissipative Particle Dynamics (DPD) method. We perform a systematic study on the red blood cell and platelet transport by considering different levels of constriction, blood hematocrit and flow rates. We find that higher levels of constriction and wall shear rates lead to significantly enhanced margination of platelets, which may explain the experimental observations of enhanced post-stenosis platelet aggregation. We also observe similar margination effects for stiff particles of spherical shapes such as leukocytes. To our knowledge, such numerical simulations of dense blood through complex geometries have not been performed before, and our quantitative findings could shed new light on the associated physiological processes such as ATP release, plasma skimming, and thrombus formation.

摘要

血小板通过动脉狭窄处的输送是影响其黏附功能和血栓形成的控制过程之一。我们对具有狭窄的微通道中的血液流动进行了高保真度介观模拟,类似于动脉狭窄。狭窄处的壁面剪切率高达约 8000 s(-1),与中度动脉粥样硬化斑块中遇到的剪切率相似。使用耗散粒子动力学 (DPD) 方法,可以在亚细胞分辨率下解析红细胞和血小板。我们通过考虑不同程度的狭窄、血液红细胞压积和流速来对红细胞和血小板的输送进行系统研究。我们发现,较高程度的狭窄和壁面剪切率会导致血小板明显的靠边聚集,这可以解释实验观察到的狭窄后血小板聚集增强的现象。我们还观察到类似的靠边聚集效应,对于球形的刚性粒子,如白细胞。据我们所知,以前没有针对复杂几何形状的密集血液进行过这样的数值模拟,我们的定量发现可能为相关生理过程提供新的认识,如 ATP 释放、血浆撇除和血栓形成。

相似文献

1
3
Quantifying Platelet Margination in Diabetic Blood Flow.
Biophys J. 2018 Oct 2;115(7):1371-1382. doi: 10.1016/j.bpj.2018.08.031. Epub 2018 Aug 30.
4
Quantifying Shear-induced Margination and Adhesion of Platelets in Microvascular Blood Flow.
J Mol Biol. 2023 Jan 15;435(1):167824. doi: 10.1016/j.jmb.2022.167824. Epub 2022 Sep 13.
5
A continuum model for platelet transport in flowing blood based on direct numerical simulations of cellular blood flow.
Ann Biomed Eng. 2015 Jun;43(6):1410-21. doi: 10.1007/s10439-014-1168-4. Epub 2014 Oct 28.
8
Comparative rheology of the adhesion of platelets and leukocytes from flowing blood: why are platelets so small?
Am J Physiol Heart Circ Physiol. 2013 Jun 1;304(11):H1483-94. doi: 10.1152/ajpheart.00881.2012. Epub 2013 Apr 12.
10
Micro-scale dynamic simulation of erythrocyte-platelet interaction in blood flow.
Ann Biomed Eng. 2008 Jun;36(6):905-20. doi: 10.1007/s10439-008-9478-z. Epub 2008 Mar 11.

引用本文的文献

1
Decoding thrombosis through code: a review of computational models.
J Thromb Haemost. 2024 Jan;22(1):35-47. doi: 10.1016/j.jtha.2023.08.021. Epub 2023 Aug 30.
2
Circulating cellular clusters are associated with thrombotic complications and clinical outcomes in COVID-19.
iScience. 2023 Jun 25;26(7):107202. doi: 10.1016/j.isci.2023.107202. eCollection 2023 Jul 21.
3
Cell-scale hemolysis evaluation of intervenient ventricular assist device based on dissipative particle dynamics.
Front Physiol. 2023 Jul 5;14:1181423. doi: 10.3389/fphys.2023.1181423. eCollection 2023.
4
The stress-free state of human erythrocytes: Data-driven inference of a transferable RBC model.
Biophys J. 2023 Apr 18;122(8):1517-1525. doi: 10.1016/j.bpj.2023.03.019. Epub 2023 Mar 16.
5
Multiphysics and multiscale modeling of microthrombosis in COVID-19.
PLoS Comput Biol. 2022 Mar 7;18(3):e1009892. doi: 10.1371/journal.pcbi.1009892. eCollection 2022 Mar.
6
Recent Advances in Computational Modeling of Biomechanics and Biorheology of Red Blood Cells in Diabetes.
Biomimetics (Basel). 2022 Jan 13;7(1):15. doi: 10.3390/biomimetics7010015.
7
Computational investigation of blood cell transport in retinal microaneurysms.
PLoS Comput Biol. 2022 Jan 5;18(1):e1009728. doi: 10.1371/journal.pcbi.1009728. eCollection 2022 Jan.
8
Microfluidic models of the human circulatory system: versatile platforms for exploring mechanobiology and disease modeling.
Biophys Rev. 2021 Jul 14;13(5):769-786. doi: 10.1007/s12551-021-00815-8. eCollection 2021 Oct.
10
Identifying the start of a platelet aggregate by the shear rate and the cell-depleted layer.
J R Soc Interface. 2019 Oct 31;16(159):20190148. doi: 10.1098/rsif.2019.0148. Epub 2019 Oct 2.

本文引用的文献

1
Patient-specific blood rheology in sickle-cell anaemia.
Interface Focus. 2016 Feb 6;6(1):20150065. doi: 10.1098/rsfs.2015.0065.
2
Fluid Mechanics of Blood Clot Formation.
Annu Rev Fluid Mech. 2015 Jan 1;47:377-403. doi: 10.1146/annurev-fluid-010814-014513.
4
A continuum model for platelet transport in flowing blood based on direct numerical simulations of cellular blood flow.
Ann Biomed Eng. 2015 Jun;43(6):1410-21. doi: 10.1007/s10439-014-1168-4. Epub 2014 Oct 28.
6
Blood flow in small tubes: quantifying the transition to the non-continuum regime.
J Fluid Mech. 2013 May 1;722. doi: 10.1017/jfm.2013.91.
7
Systematic coarse-graining of spectrin-level red blood cell models.
Comput Methods Appl Mech Eng. 2010 Jun 1;199(29-32). doi: 10.1016/j.cma.2010.02.001.
8
An investigation on platelet transport during thrombus formation at micro-scale stenosis.
PLoS One. 2013 Oct 23;8(10):e74123. doi: 10.1371/journal.pone.0074123. eCollection 2013.
9
Simulation of platelet, thrombus and erythrocyte hydrodynamic interactions in a 3D arteriole with in vivo comparison.
PLoS One. 2013 Oct 2;8(10):e76949. doi: 10.1371/journal.pone.0076949. eCollection 2013.
10
Platelet transport rates and binding kinetics at high shear over a thrombus.
Biophys J. 2013 Jul 16;105(2):502-11. doi: 10.1016/j.bpj.2013.05.049.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验