Suppr超能文献

以桡足类近亲真宽水蚤为模型系统的栖息地入侵进化机制。

Evolutionary mechanisms of habitat invasions, using the copepod Eurytemora affinis as a model system.

作者信息

Lee Carol Eunmi

机构信息

Center of Rapid Evolution (CORE) University of Wisconsin Madison WI USA.

出版信息

Evol Appl. 2015 Nov 30;9(1):248-70. doi: 10.1111/eva.12334. eCollection 2016 Jan.

Abstract

The study of the copepod Eurytemora affinis has provided unprecedented insights into mechanisms of invasive success. In this invited review, I summarize a subset of work from my laboratory to highlight key insights gained from studying E. affinis as a model system. Invasive species with brackish origins are overrepresented in freshwater habitats. The copepod E. affinis is an example of such a brackish invader, and has invaded freshwater habitats multiple times independently in recent years. These invasions were accompanied by the evolution of physiological tolerance and plasticity, increased body fluid regulation, and evolutionary shifts in ion transporter (V-type H(+) ATPase, Na(+), K(+)-ATPase) activity and expression. These evolutionary changes occurred in parallel across independent invasions in nature and in laboratory selection experiments. Selection appears to act on standing genetic variation during invasions, and maintenance of this variation is likely facilitated through 'beneficial reversal of dominance' in salinity tolerance across habitats. Expression of critical ion transporters is localized in newly discovered Crusalis leg organs. Increased freshwater tolerance is accompanied by costs to development time and greater requirements for food. High-food concentration increases low-salinity tolerance, allowing saline populations to invade freshwater habitats. Mechanisms observed here likely have relevance for other taxa undergoing fundamental niche expansions.

摘要

对桡足类近亲真宽水蚤的研究为入侵成功机制提供了前所未有的见解。在这篇特邀综述中,我总结了我实验室的一部分工作,以突出通过将近亲真宽水蚤作为模型系统进行研究而获得的关键见解。具有咸淡水起源的入侵物种在淡水生境中占比过高。桡足类近亲真宽水蚤就是这样一种咸淡水入侵者的例子,近年来它已多次独立入侵淡水生境。这些入侵伴随着生理耐受性和可塑性的进化、体液调节的增强以及离子转运蛋白(V型H(+)ATP酶、Na(+)、K(+)-ATP酶)活性和表达的进化转变。这些进化变化在自然界的独立入侵以及实验室选择实验中并行发生。在入侵过程中,选择似乎作用于现存的遗传变异,而这种变异的维持可能是通过不同生境间盐度耐受性的“有益显性逆转”来实现的。关键离子转运蛋白的表达定位于新发现的 Crusalis 腿器官中。淡水耐受性的提高伴随着发育时间的代价以及对食物的更高需求。高食物浓度会增加低盐度耐受性,使咸水种群能够入侵淡水生境。这里观察到的机制可能与其他正在经历基础生态位扩张的分类群相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4161/4780390/85fafc9fb0db/EVA-9-248-g001.jpg

相似文献

1
Evolutionary mechanisms of habitat invasions, using the copepod Eurytemora affinis as a model system.
Evol Appl. 2015 Nov 30;9(1):248-70. doi: 10.1111/eva.12334. eCollection 2016 Jan.
4
Pumping ions: rapid parallel evolution of ionic regulation following habitat invasions.
Evolution. 2011 Aug;65(8):2229-44. doi: 10.1111/j.1558-5646.2011.01308.x. Epub 2011 Apr 27.
7
Rapid evolution of body fluid regulation following independent invasions into freshwater habitats.
J Evol Biol. 2012 Apr;25(4):625-33. doi: 10.1111/j.1420-9101.2012.02459.x. Epub 2012 Feb 1.
8
Genome architecture underlying salinity adaptation in the invasive copepod species complex: A review.
iScience. 2023 Sep 7;26(10):107851. doi: 10.1016/j.isci.2023.107851. eCollection 2023 Oct 20.
9
Ion Transporter Gene Families as Physiological Targets of Natural Selection During Salinity Transitions in a Copepod.
Physiology (Bethesda). 2021 Nov 1;36(6):335-349. doi: 10.1152/physiol.00009.2021.
10
Response to selection and evolvability of invasive populations.
Genetica. 2007 Feb;129(2):179-92. doi: 10.1007/s10709-006-9013-9. Epub 2006 Aug 17.

引用本文的文献

1
Genomic investigations of successful invasions: the picture emerging from recent studies.
Biol Rev Camb Philos Soc. 2025 Jun;100(3):1396-1418. doi: 10.1111/brv.70005. Epub 2025 Feb 16.
2
Ionic regulatory strategies of crabs: the transition from water to land.
Front Physiol. 2024 Sep 27;15:1399194. doi: 10.3389/fphys.2024.1399194. eCollection 2024.
4
Evolution of ion transporter Na/K-ATPase expression in the osmoregulatory maxillary glands of an invasive copepod.
iScience. 2024 Jun 17;27(7):110278. doi: 10.1016/j.isci.2024.110278. eCollection 2024 Jul 19.
6
Genome architecture underlying salinity adaptation in the invasive copepod species complex: A review.
iScience. 2023 Sep 7;26(10):107851. doi: 10.1016/j.isci.2023.107851. eCollection 2023 Oct 20.
8
The evolution of marine dwelling in Diptera.
Ecol Evol. 2021 Jul 24;11(16):11440-11448. doi: 10.1002/ece3.7935. eCollection 2021 Aug.
9
Were all trilobites fully marine? Trilobite expansion into brackish water during the early Palaeozoic.
Proc Biol Sci. 2021 Feb 10;288(1944):20202263. doi: 10.1098/rspb.2020.2263. Epub 2021 Feb 3.
10
Complete mitochondrial genome of the calanoid copepod (Calanoida, Temoridae).
Mitochondrial DNA B Resour. 2019 Jul 22;4(2):2731-2733. doi: 10.1080/23802359.2019.1644558.

本文引用的文献

1
Ion Transport in the Freshwater Zebra Mussel, Dreissena polymorpha.
Biol Bull. 1992 Oct;183(2):297-303. doi: 10.2307/1542216.
2
RAPID AND REPEATED INVASIONS OF FRESH WATER BY THE COPEPOD EURYTEMORA AFFINIS.
Evolution. 1999 Oct;53(5):1423-1434. doi: 10.1111/j.1558-5646.1999.tb05407.x.
5
Out of the Black Sea: phylogeography of the invasive killer shrimp Dikerogammarus villosus across Europe.
PLoS One. 2015 Feb 18;10(2):e0118121. doi: 10.1371/journal.pone.0118121. eCollection 2015.
7
Evolutionary origins of invasive populations.
Evol Appl. 2008 Aug;1(3):427-48. doi: 10.1111/j.1752-4571.2008.00039.x. Epub 2008 Jun 28.
8
Evolution of phenotypic plasticity in colonizing species.
Mol Ecol. 2015 May;24(9):2038-45. doi: 10.1111/mec.13037. Epub 2015 Jan 12.
10
Without gills: localization of osmoregulatory function in the copepod Eurytemora affinis.
Physiol Biochem Zool. 2014 Mar-Apr;87(2):310-24. doi: 10.1086/674319. Epub 2013 Dec 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验