Xu Zihan, Mao Binchen, Liu Hengyuan, Wang Shijia, Chen Xiaobo, Guo Sheng
Crown Bioscience Inc., 218 Xinghu Road, Suzhou 215000, China.
iScience. 2025 Jun 27;28(8):113024. doi: 10.1016/j.isci.2025.113024. eCollection 2025 Aug 15.
Mouse syngeneic models serve as indispensable tools for elucidating tumor-immune interactions and assessing immunotherapy efficacy. In this study, we first conducted a comprehensive evaluation of six label-free protein quantification pipelines across 12 mouse syngeneic models, revealing that data-independent acquisition (DIA) significantly outperforms data-dependent acquisition (DDA) in terms of data coverage, reproducibility, and inter-model discrimination. We next performed an integrative multi-omics analysis to uncover molecular mechanisms associated with treatment response. Our analysis identified Dnmt3a and Igf2r, which are correlated with resistance to immune checkpoint inhibitors (ICIs), and highlighted key pathways including interferon signaling and oxidative phosphorylation that distinguish responders from non-responders. To facilitate broader research applications, we have developed an interactive web resource that shares our multi-omics datasets and analytical results, equipped with user-friendly tools for further exploration. This resource aims to accelerate preclinical research and contribute to the development of personalized cancer therapies.
小鼠同基因模型是阐明肿瘤-免疫相互作用和评估免疫治疗疗效不可或缺的工具。在本研究中,我们首先对12种小鼠同基因模型中的六种无标记蛋白质定量流程进行了全面评估,结果表明,在数据覆盖范围、可重复性和模型间区分方面,数据非依赖采集(DIA)显著优于数据依赖采集(DDA)。接下来,我们进行了综合多组学分析,以揭示与治疗反应相关的分子机制。我们的分析确定了与免疫检查点抑制剂(ICI)耐药相关的Dnmt3a和Igf2r,并突出了包括干扰素信号传导和氧化磷酸化在内的关键途径,这些途径可区分反应者和无反应者。为了促进更广泛的研究应用,我们开发了一个交互式网络资源,该资源共享我们的多组学数据集和分析结果,并配备了便于用户进一步探索的工具。该资源旨在加速临床前研究,并为个性化癌症治疗的发展做出贡献。