Suppr超能文献

通过组学整合软件包对多样的高通量数据集进行基于网络的解读。

Network-Based Interpretation of Diverse High-Throughput Datasets through the Omics Integrator Software Package.

作者信息

Tuncbag Nurcan, Gosline Sara J C, Kedaigle Amanda, Soltis Anthony R, Gitter Anthony, Fraenkel Ernest

机构信息

Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.

出版信息

PLoS Comput Biol. 2016 Apr 20;12(4):e1004879. doi: 10.1371/journal.pcbi.1004879. eCollection 2016 Apr.

Abstract

High-throughput, 'omic' methods provide sensitive measures of biological responses to perturbations. However, inherent biases in high-throughput assays make it difficult to interpret experiments in which more than one type of data is collected. In this work, we introduce Omics Integrator, a software package that takes a variety of 'omic' data as input and identifies putative underlying molecular pathways. The approach applies advanced network optimization algorithms to a network of thousands of molecular interactions to find high-confidence, interpretable subnetworks that best explain the data. These subnetworks connect changes observed in gene expression, protein abundance or other global assays to proteins that may not have been measured in the screens due to inherent bias or noise in measurement. This approach reveals unannotated molecular pathways that would not be detectable by searching pathway databases. Omics Integrator also provides an elegant framework to incorporate not only positive data, but also negative evidence. Incorporating negative evidence allows Omics Integrator to avoid unexpressed genes and avoid being biased toward highly-studied hub proteins, except when they are strongly implicated by the data. The software is comprised of two individual tools, Garnet and Forest, that can be run together or independently to allow a user to perform advanced integration of multiple types of high-throughput data as well as create condition-specific subnetworks of protein interactions that best connect the observed changes in various datasets. It is available at http://fraenkel.mit.edu/omicsintegrator and on GitHub at https://github.com/fraenkel-lab/OmicsIntegrator.

摘要

高通量“组学”方法为生物对扰动的反应提供了灵敏的测量手段。然而,高通量检测中固有的偏差使得难以解释收集了不止一种类型数据的实验。在这项工作中,我们引入了Omics Integrator,这是一个软件包,它将各种“组学”数据作为输入,并识别潜在的分子通路。该方法将先进的网络优化算法应用于包含数千个分子相互作用的网络,以找到最能解释数据的高可信度、可解释的子网。这些子网将基因表达、蛋白质丰度或其他全局检测中观察到的变化与由于测量中固有的偏差或噪声而可能未在筛选中测量的蛋白质联系起来。这种方法揭示了通过搜索通路数据库无法检测到的未注释分子通路。Omics Integrator还提供了一个优雅的框架,不仅可以纳入正数据,还可以纳入负证据。纳入负证据使Omics Integrator能够避免未表达的基因,并避免偏向于研究充分的枢纽蛋白,除非这些蛋白被数据强烈牵连。该软件由两个独立的工具Garnet和Forest组成,可以一起运行或独立运行,以允许用户对多种类型的高通量数据进行高级整合,以及创建最能连接各种数据集中观察到的变化的特定条件下的蛋白质相互作用子网。它可在http://fraenkel.mit.edu/omicsintegrator以及GitHub上的https://github.com/fraenkel-lab/OmicsIntegrator获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22ba/4838263/6ce3a200d4fc/pcbi.1004879.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验