Department of Chemistry, University of Chicago, Chicago, IL, USA.
The James Franck Institute, University of Chicago, Chicago, IL, USA.
Nat Nanotechnol. 2021 Feb;16(2):206-213. doi: 10.1038/s41565-020-00805-z. Epub 2020 Dec 7.
Real-world bioelectronics applications, including drug delivery systems, biosensing and electrical modulation of tissues and organs, largely require biointerfaces at the macroscopic level. However, traditional macroscale bioelectronic electrodes usually exhibit invasive or power-inefficient architectures, inability to form uniform and subcellular interfaces, or faradaic reactions at electrode surfaces. Here, we develop a micelle-enabled self-assembly approach for a binder-free and carbon-based monolithic device, aimed at large-scale bioelectronic interfaces. The device incorporates a multi-scale porous material architecture, an interdigitated microelectrode layout and a supercapacitor-like performance. In cell training processes, we use the device to modulate the contraction rate of primary cardiomyocytes at the subcellular level to target frequency in vitro. We also achieve capacitive control of the electrophysiology in isolated hearts, retinal tissues and sciatic nerves, as well as bioelectronic cardiac sensing. Our results support the exploration of device platforms already used in energy research to identify new opportunities in bioelectronics.
实际应用的生物电子学,包括药物输送系统、生物传感和组织与器官的电调制,在很大程度上需要宏观层面的生物界面。然而,传统的宏观生物电子电极通常表现出侵入性或低能效的结构,无法形成均匀的亚细胞界面,或在电极表面发生法拉第反应。在这里,我们开发了一种胶束辅助的自组装方法,用于制造无粘合剂的基于碳的整体式器件,以实现大规模生物电子界面。该器件结合了多尺度多孔材料结构、叉指微电极布局和类似于超级电容器的性能。在细胞训练过程中,我们使用该器件在亚细胞水平上调节原代心肌细胞的收缩率,以达到体外的目标频率。我们还实现了对分离心脏、视网膜组织和坐骨神经的电生理学以及生物电子心脏传感的电容控制。我们的结果支持了对已经用于能源研究的器件平台的探索,以发现生物电子学中的新机遇。