Aadland Eli K, Graff Ingvild E, Lavigne Charles, Eng Øyvin, Paquette Martine, Holthe Asle, Mellgren Gunnar, Madsen Lise, Jacques Hélène, Liaset Bjørn
National Institute of Nutrition and Seafood Research, Bergen, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway; Faculty of Education, Bergen University College, Bergen, Norway;
National Institute of Nutrition and Seafood Research, Bergen, Norway;
J Nutr. 2016 May;146(5):1027-34. doi: 10.3945/jn.115.229278. Epub 2016 Apr 20.
Recently we showed that lean seafood consumption reduced circulating triacylglycerol (TG) and VLDL concentrations and prevented an elevated total-to-HDL-cholesterol ratio relative to intake of a nonseafood diet.
We aimed to elucidate whether diet-induced altered carbohydrate metabolism could be a contributing factor to the previously observed different lipoprotein patterns.
This was a secondary outcome and explorative randomized controlled trial with a crossover design in 20 healthy adults (7 men and 13 women) that were 50.6 ± 3.4 (mean ± SEM) y old, weighed 75.7 ± 2.5 kg, and had a body mass index (BMI, in kg/m(2)) of 25.6 ± 0.7. After a 3-wk run-in period and separated by a 5-wk wash-out period, the participants consumed 2 balanced diets [in percentage of energy (energy%); 29% fat, 52% carbohydrates, 19% protein] for 4 wk. The diets varied in the main protein sources; 60 energy% of total protein was from either lean seafood or nonseafood sources. On the first and last day of each diet period, fasting and postprandial blood samples were collected before and after consumption of test meals (in energy%; 28% fat, 52% carbohydrates, 20% protein) with cod or lean beef.
The diets did not alter serum insulin and glucose concentrations. However, relative to the nonseafood diet period, the lean seafood diet period reduced postprandial C-peptide (P = 0.04) and lactate (P = 0.012) concentrations and fasting and postprandial TG/HDL-cholesterol ratios (P = 0.002). Hence, different postprandial lactate levels occurred at equal glucose concentrations.
Even though the diets did not alter serum insulin and glucose concentrations, intake of the lean seafood compared with the nonseafood diet reduced postprandial concentrations of C-peptide and lactate and the TG/HDL-cholesterol ratio in healthy adults in a manner that may affect the long-term development of insulin resistance, type 2 diabetes, and cardiovascular disease. This trial was registered at www.clinicaltrials.gov as NCT01708681.
最近我们发现,与摄入非海鲜饮食相比,食用低脂海鲜可降低循环三酰甘油(TG)和极低密度脂蛋白(VLDL)浓度,并防止总胆固醇与高密度脂蛋白胆固醇比值升高。
我们旨在阐明饮食诱导的碳水化合物代谢改变是否可能是先前观察到的不同脂蛋白模式的一个促成因素。
这是一项次要结局探索性随机对照试验,采用交叉设计,纳入20名健康成年人(7名男性和13名女性),年龄为50.6±3.4(均值±标准误)岁,体重75.7±2.5 kg,体重指数(BMI,单位:kg/m²)为25.6±0.7。经过3周的导入期,中间间隔5周的洗脱期后,参与者食用两种均衡饮食[能量百分比(能量%);29%脂肪、52%碳水化合物、19%蛋白质],为期4周。两种饮食的主要蛋白质来源不同;总蛋白质的60能量%分别来自低脂海鲜或非海鲜来源。在每个饮食期的第一天和最后一天,在食用以鳕鱼或瘦牛肉为原料的试验餐(能量%;28%脂肪、52%碳水化合物、20%蛋白质)前后,采集空腹和餐后血样。
两种饮食均未改变血清胰岛素和葡萄糖浓度。然而,与非海鲜饮食期相比,低脂海鲜饮食期降低了餐后C肽(P = 0.04)和乳酸(P = 0.012)浓度以及空腹和餐后TG/HDL胆固醇比值(P = 0.002)。因此,在相同葡萄糖浓度下出现了不同的餐后乳酸水平。
尽管两种饮食均未改变血清胰岛素和葡萄糖浓度,但与非海鲜饮食相比,食用低脂海鲜可降低健康成年人餐后C肽和乳酸浓度以及TG/HDL胆固醇比值,其方式可能会影响胰岛素抵抗、2型糖尿病和心血管疾病的长期发展。该试验已在www.clinicaltrials.gov上注册,注册号为NCT01708681。