Li Yingbo, Rose France, di Pietro Florencia, Morin Xavier, Genovesio Auguste
Scientific Center for Computational Biology, Institut de Biologie de l'Ecole Normale Superieure, CNRS-INSERM-ENS, PSL Research University, 46, rue d'Ulm, Paris, 75005, France.
Division cellulaire et neurogenèse, Institut de Biologie de l'Ecole Normale Superieure, PSL Research University, 46, rue d'Ulm, Paris, 75005, France.
BMC Bioinformatics. 2016 Apr 26;17(1):183. doi: 10.1186/s12859-016-1030-9.
Cell culture on printed micropatterns slides combined with automated fluorescent microscopy allows for extraction of tens of thousands of videos of small isolated growing cell clusters. The analysis of such large dataset in space and time is of great interest to the community in order to identify factors involved in cell growth, cell division or tissue formation by testing multiples conditions. However, cells growing on a micropattern tend to be tightly packed and to overlap with each other. Consequently, image analysis of those large dynamic datasets with no possible human intervention has proven impossible using state of the art automated cell detection methods.
Here, we propose a fully automated image analysis approach to estimate the number, the location and the shape of each cell nucleus, in clusters at high throughput. The method is based on a robust fit of Gaussian mixture models with two and three components on each frame followed by an analysis over time of the fitting residual and two other relevant features. We use it to identify with high precision the very first frame containing three cells. This allows in our case to measure a cell division angle on each video and to construct division angle distributions for each tested condition. We demonstrate the accuracy of our method by validating it against manual annotation on about 4000 videos of cell clusters.
The proposed approach enables the high throughput analysis of video sequences of isolated cell clusters obtained using micropatterns. It relies only on two parameters that can be set robustly as they reduce to the average cell size and intensity.
在打印有微图案的载玻片上进行细胞培养,并结合自动荧光显微镜技术,能够提取数以万计的小型孤立生长细胞簇的视频。为了通过测试多种条件来识别参与细胞生长、细胞分裂或组织形成的因素,科学界对在时空上分析如此庞大的数据集非常感兴趣。然而,在微图案上生长的细胞往往紧密堆积且相互重叠。因此,使用现有的自动细胞检测方法,在没有人工干预的情况下对这些大型动态数据集进行图像分析已被证明是不可能的。
在此,我们提出一种全自动图像分析方法,以高通量方式估计细胞簇中每个细胞核的数量、位置和形状。该方法基于在每一帧上对具有两个和三个成分的高斯混合模型进行稳健拟合,随后对拟合残差和其他两个相关特征进行随时间的分析。我们使用它来高精度地识别包含三个细胞的第一帧。在我们的案例中,这使得能够在每个视频上测量细胞分裂角度,并为每个测试条件构建分裂角度分布。我们通过在约4000个细胞簇视频上与手动注释进行验证,证明了我们方法的准确性。
所提出的方法能够对使用微图案获得的孤立细胞簇的视频序列进行高通量分析。它仅依赖于两个可以稳健设置的参数,因为它们归结为平均细胞大小和强度。