Vaarmann Annika, Mandel Merle, Zeb Akbar, Wareski Przemyslaw, Liiv Joanna, Kuum Malle, Antsov Eva, Liiv Mailis, Cagalinec Michal, Choubey Vinay, Kaasik Allen
Department of Pharmacology, Centre of Excellence for Translational Medicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, Tartu 51014, Estonia.
Department of Pharmacology, Centre of Excellence for Translational Medicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, Tartu 51014, Estonia
Development. 2016 Jun 1;143(11):1981-92. doi: 10.1242/dev.128926. Epub 2016 Apr 27.
During early development, neurons undergo complex morphological rearrangements to assemble into neuronal circuits and propagate signals. Rapid growth requires a large quantity of building materials, efficient intracellular transport and also a considerable amount of energy. To produce this energy, the neuron should first generate new mitochondria because the pre-existing mitochondria are unlikely to provide a sufficient acceleration in ATP production. Here, we demonstrate that mitochondrial biogenesis and ATP production are required for axonal growth and neuronal development in cultured rat cortical neurons. We also demonstrate that growth signals activating the CaMKKβ, LKB1-STRAD or TAK1 pathways also co-activate the AMPK-PGC-1α-NRF1 axis leading to the generation of new mitochondria to ensure energy for upcoming growth. In conclusion, our results suggest that neurons are capable of signalling for upcoming energy requirements. Earlier activation of mitochondrial biogenesis through these pathways will accelerate the generation of new mitochondria, thereby ensuring energy-producing capability for when other factors for axonal growth are synthesized.
在早期发育过程中,神经元会经历复杂的形态重排,以组装成神经回路并传递信号。快速生长需要大量的构建材料、高效的细胞内运输以及相当数量的能量。为了产生这种能量,神经元首先应该生成新的线粒体,因为现有的线粒体不太可能在ATP生成方面提供足够的加速作用。在这里,我们证明了线粒体生物发生和ATP生成是培养的大鼠皮质神经元轴突生长和神经元发育所必需的。我们还证明,激活CaMKKβ、LKB1-STRAD或TAK1途径的生长信号也会共同激活AMPK-PGC-1α-NRF1轴,从而导致新线粒体的生成,以确保为即将到来的生长提供能量。总之,我们的结果表明神经元能够为即将到来的能量需求发出信号。通过这些途径早期激活线粒体生物发生将加速新线粒体的生成,从而确保在合成轴突生长的其他因素时具备产生能量的能力。