Suppr超能文献

关于随机临床试验中风险比的置信区间

On confidence intervals for the hazard ratio in randomized clinical trials.

作者信息

Lin Dan-Yu, Dai Luyan, Cheng Gang, Sailer Martin Oliver

机构信息

Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina 27599, U.S.A.

Boehringer Ingelheim Investment Co., Ltd., 1601 Nanjing Road West, Shanghai 200040, P.R. China.

出版信息

Biometrics. 2016 Dec;72(4):1098-1102. doi: 10.1111/biom.12528. Epub 2016 Apr 28.

Abstract

The log-rank test is widely used to compare two survival distributions in a randomized clinical trial, while partial likelihood (Cox, 1975) is the method of choice for making inference about the hazard ratio under the Cox (1972) proportional hazards model. The Wald 95% confidence interval of the hazard ratio may include the null value of 1 when the p-value of the log-rank test is less than 0.05. Peto et al. (1977) provided an estimator for the hazard ratio based on the log-rank statistic; the corresponding 95% confidence interval excludes the null value of 1 if and only if the p-value of the log-rank test is less than 0.05. However, Peto's estimator is not consistent, and the corresponding confidence interval does not have correct coverage probability. In this article, we construct the confidence interval by inverting the score test under the (possibly stratified) Cox model, and we modify the variance estimator such that the resulting score test for the null hypothesis of no treatment difference is identical to the log-rank test in the possible presence of ties. Like Peto's method, the proposed confidence interval excludes the null value if and only if the log-rank test is significant. Unlike Peto's method, however, this interval has correct coverage probability. An added benefit of the proposed confidence interval is that it tends to be more accurate and narrower than the Wald confidence interval. We demonstrate the advantages of the proposed method through extensive simulation studies and a colon cancer study.

摘要

对数秩检验在随机临床试验中被广泛用于比较两种生存分布,而偏似然法(Cox,1975年)是在Cox(1972年)比例风险模型下推断风险比的首选方法。当对数秩检验的p值小于0.05时,风险比的Wald 95%置信区间可能包含1的零值。Peto等人(1977年)基于对数秩统计量提供了一种风险比估计方法;相应的95%置信区间当且仅当对数秩检验的p值小于0.05时才排除1的零值。然而,Peto估计量不一致,且相应的置信区间没有正确的覆盖概率。在本文中,我们通过对(可能分层的)Cox模型下的得分检验求逆来构建置信区间,并修改方差估计量,使得在可能存在 ties 的情况下,针对无治疗差异的零假设的得分检验与对数秩检验相同。与Peto方法一样,所提出的置信区间当且仅当对数秩检验显著时才排除零值。然而,与Peto方法不同的是,这个区间有正确的覆盖概率。所提出的置信区间的一个额外优点是,它往往比Wald置信区间更准确且更窄。我们通过广泛的模拟研究和一项结肠癌研究展示了所提出方法的优势。

相似文献

5
A log rank type test in observational survival studies with stratified sampling.分层抽样观察性生存研究中的对数秩检验。
Lifetime Data Anal. 2016 Apr;22(2):280-98. doi: 10.1007/s10985-015-9331-2. Epub 2015 May 30.

引用本文的文献

7
Vaccine-mediated protection against -associated enteric disease.疫苗介导的针对相关肠道疾病的保护作用。
Sci Adv. 2020 Jun 24;6(26):eaba4511. doi: 10.1126/sciadv.aba4511. eCollection 2020 Jun.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验