Suppr超能文献

用于嵌套数据贝叶斯非参数分析的通用原子模型。

A Common Atoms Model for the Bayesian Nonparametric Analysis of Nested Data.

作者信息

Denti Francesco, Camerlenghi Federico, Guindani Michele, Mira Antonietta

机构信息

Department of Statistics, University of California, Irvine, CA.

Department of Economics, Management and Statistics, University of Milano - Bicocca, Milan, Italy.

出版信息

J Am Stat Assoc. 2023;118(541):405-416. doi: 10.1080/01621459.2021.1933499. Epub 2021 Jul 14.

Abstract

The use of large datasets for targeted therapeutic interventions requires new ways to characterize the heterogeneity observed across subgroups of a specific population. In particular, models for partially exchangeable data are needed for inference on nested datasets, where the observations are assumed to be organized in different units and some sharing of information is required to learn distinctive features of the units. In this manuscript, we propose a nested common atoms model (CAM) that is particularly suited for the analysis of nested datasets where the distributions of the units are expected to differ only over a small fraction of the observations sampled from each unit. The proposed CAM allows a two-layered clustering at the distributional and observational level and is amenable to scalable posterior inference through the use of a computationally efficient nested slice sampler algorithm. We further discuss how to extend the proposed modeling framework to handle discrete measurements, and we conduct posterior inference on a real microbiome dataset from a diet swap study to investigate how the alterations in intestinal microbiota composition are associated with different eating habits. We further investigate the performance of our model in capturing true distributional structures in the population by means of a simulation study.

摘要

将大型数据集用于靶向治疗干预需要新的方法来刻画特定人群亚组中观察到的异质性。特别是,对于嵌套数据集的推断,需要部分可交换数据的模型,其中观测值被假定按不同单元组织,并且需要一些信息共享来了解各单元的独特特征。在本文中,我们提出了一种嵌套公共原子模型(CAM),它特别适用于分析嵌套数据集,在这些数据集中,各单元的分布预计仅在从每个单元采样的一小部分观测值上有所不同。所提出的CAM允许在分布和观测层面进行两层聚类,并且通过使用计算效率高的嵌套切片采样器算法,适用于可扩展的后验推断。我们进一步讨论了如何扩展所提出的建模框架以处理离散测量,并且我们对一项饮食交换研究中的真实微生物组数据集进行后验推断,以研究肠道微生物群组成的改变如何与不同的饮食习惯相关联。我们还通过模拟研究进一步研究了我们的模型在捕捉总体中真实分布结构方面的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25fa/10120855/a3601da46ce8/nihms-1757309-f0001.jpg

相似文献

2
Latent Nested Nonparametric Priors (with Discussion).潜在嵌套非参数先验(附讨论)
Bayesian Anal. 2019 Dec;14(4):1303-1356. doi: 10.1214/19-BA1169. Epub 2019 Jun 27.
7
A Nonparametric Bayesian Model for Nested Clustering.用于嵌套聚类的非参数贝叶斯模型
Methods Mol Biol. 2016;1362:129-41. doi: 10.1007/978-1-4939-3106-4_8.

本文引用的文献

1
Latent Nested Nonparametric Priors (with Discussion).潜在嵌套非参数先验(附讨论)
Bayesian Anal. 2019 Dec;14(4):1303-1356. doi: 10.1214/19-BA1169. Epub 2019 Jun 27.
2
Analysis of Microbiome Data in the Presence of Excess Zeros.存在大量零值情况下的微生物组数据分析。
Front Microbiol. 2017 Nov 7;8:2114. doi: 10.3389/fmicb.2017.02114. eCollection 2017.
4
Nonparametric spatial models for clustered ordered periodontal data.用于聚类有序牙周数据的非参数空间模型。
J R Stat Soc Ser C Appl Stat. 2016 Aug;65(4):619-640. doi: 10.1111/rssc.12150. Epub 2016 Apr 14.
6
Robustifying Bayesian nonparametric mixtures for count data.增强用于计数数据的贝叶斯非参数混合模型
Biometrics. 2017 Mar;73(1):174-184. doi: 10.1111/biom.12538. Epub 2016 Apr 28.
7
Nested Hierarchical Dirichlet Processes.嵌套层次狄利克雷过程。
IEEE Trans Pattern Anal Mach Intell. 2015 Feb;37(2):256-70. doi: 10.1109/TPAMI.2014.2318728.
9
Contribution of diet to the composition of the human gut microbiota.饮食对人类肠道微生物群组成的影响。
Microb Ecol Health Dis. 2015 Feb 4;26:26164. doi: 10.3402/mehd.v26.26164. eCollection 2015.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验