Suppr超能文献

辅助活性家族10(AA10)裂解多糖单加氧酶中组氨酸支撑铜配位球的异质性。

Heterogeneity in the Histidine-brace Copper Coordination Sphere in Auxiliary Activity Family 10 (AA10) Lytic Polysaccharide Monooxygenases.

作者信息

Chaplin Amanda K, Wilson Michael T, Hough Michael A, Svistunenko Dimitri A, Hemsworth Glyn R, Walton Paul H, Vijgenboom Erik, Worrall Jonathan A R

机构信息

From the School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom.

the Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom, and.

出版信息

J Biol Chem. 2016 Jun 10;291(24):12838-12850. doi: 10.1074/jbc.M116.722447. Epub 2016 Apr 15.

Abstract

Copper-dependent lytic polysaccharide monooxygenases (LPMOs) are enzymes that oxidatively deconstruct polysaccharides. The active site copper in LPMOs is coordinated by a histidine-brace. This utilizes the amino group and side chain of the N-terminal His residue with the side chain of a second His residue to create a T-shaped arrangement of nitrogen ligands. We report a structural, kinetic, and thermodynamic appraisal of copper binding to the histidine-brace in an auxiliary activity family 10 (AA10) LPMO from Streptomyces lividans (SliLPMO10E). Unexpectedly, we discovered the existence of two apo-SliLPMO10E species in solution that can each bind copper at a single site with distinct kinetic and thermodynamic (exothermic and endothermic) properties. The experimental EPR spectrum of copper-bound SliLPMO10E requires the simulation of two different line shapes, implying two different copper-bound species, indicative of three and two nitrogen ligands coordinating the copper. Amino group coordination was probed through the creation of an N-terminal extension variant (SliLPMO10E-Ext). The kinetics and thermodynamics of copper binding to SliLPMO10E-Ext are in accord with copper binding to one of the apo-forms in the wild-type protein, suggesting that amino group coordination is absent in the two-nitrogen coordinate form of SliLPMO10E. Copper binding to SliLPMO10B was also investigated, and again it revealed the presence of two apo-forms with kinetics and stoichiometry of copper binding identical to that of SliLPMO10E. Our findings highlight that heterogeneity exists in the active site copper coordination sphere of LPMOs that may have implications for the mechanism of loading copper in the cell.

摘要

铜依赖性裂解多糖单加氧酶(LPMOs)是一类可氧化解构多糖的酶。LPMOs中的活性位点铜由一个组氨酸支架配位。它利用N端组氨酸残基的氨基和侧链与另一个组氨酸残基的侧链形成氮配体的T形排列。我们报告了对来自淡紫链霉菌(SliLPMO10E)的辅助活性家族10(AA10)LPMO中铜与组氨酸支架结合的结构、动力学和热力学评估。出乎意料的是,我们发现溶液中存在两种无铜的SliLPMO10E物种,它们各自可在单个位点结合铜,具有不同的动力学和热力学(放热和吸热)性质。结合铜的SliLPMO10E的实验电子顺磁共振光谱需要模拟两种不同的线形,这意味着存在两种不同的结合铜的物种,表明有三个和两个氮配体与铜配位。通过创建N端延伸变体(SliLPMO10E-Ext)来探究氨基配位情况。铜与SliLPMO10E-Ext结合的动力学和热力学与铜与野生型蛋白中一种无铜形式的结合情况一致,这表明在SliLPMO10E的双氮配位形式中不存在氨基配位。我们还研究了铜与SliLPMO10B的结合,结果再次表明存在两种无铜形式,其铜结合的动力学和化学计量与SliLPMO10E相同。我们的研究结果突出表明,LPMOs活性位点铜配位球中存在异质性,这可能对细胞中铜的加载机制有影响。

相似文献

1
Heterogeneity in the Histidine-brace Copper Coordination Sphere in Auxiliary Activity Family 10 (AA10) Lytic Polysaccharide Monooxygenases.
J Biol Chem. 2016 Jun 10;291(24):12838-12850. doi: 10.1074/jbc.M116.722447. Epub 2016 Apr 15.
3
Structural and functional characterization of a conserved pair of bacterial cellulose-oxidizing lytic polysaccharide monooxygenases.
Proc Natl Acad Sci U S A. 2014 Jun 10;111(23):8446-51. doi: 10.1073/pnas.1402771111. Epub 2014 May 27.
4
Comparative study of two chitin-active and two cellulose-active AA10-type lytic polysaccharide monooxygenases.
Biochemistry. 2014 Mar 18;53(10):1647-56. doi: 10.1021/bi5000433. Epub 2014 Mar 5.
5
Discovery and characterization of a new family of lytic polysaccharide monooxygenases.
Nat Chem Biol. 2014 Feb;10(2):122-6. doi: 10.1038/nchembio.1417. Epub 2013 Dec 22.
6
Mechanistic basis of substrate-O coupling within a chitin-active lytic polysaccharide monooxygenase: An integrated NMR/EPR study.
Proc Natl Acad Sci U S A. 2020 Aug 11;117(32):19178-19189. doi: 10.1073/pnas.2004277117. Epub 2020 Jul 28.
9
Insights into an unusual Auxiliary Activity 9 family member lacking the histidine brace motif of lytic polysaccharide monooxygenases.
J Biol Chem. 2019 Nov 8;294(45):17117-17130. doi: 10.1074/jbc.RA119.009223. Epub 2019 Aug 30.
10
PCuC domains from methane-oxidizing bacteria use a histidine brace to bind copper.
J Biol Chem. 2019 Nov 1;294(44):16351-16363. doi: 10.1074/jbc.RA119.010093. Epub 2019 Sep 16.

引用本文的文献

1
Mutational dissection of a hole hopping route in a lytic polysaccharide monooxygenase (LPMO).
Nat Commun. 2024 May 10;15(1):3975. doi: 10.1038/s41467-024-48245-w.
2
Enhancing enzymatic saccharification yields of cellulose at high solid loadings by combining different LPMO activities.
Biotechnol Biofuels Bioprod. 2024 Mar 9;17(1):39. doi: 10.1186/s13068-024-02485-6.
4
The AA10 LPMO is active on fungal cell wall chitin.
Appl Environ Microbiol. 2023 Oct 31;89(10):e0057323. doi: 10.1128/aem.00573-23. Epub 2023 Sep 13.
5
Perdeuterated GbpA Enables Neutron Scattering Experiments of a Lytic Polysaccharide Monooxygenase.
ACS Omega. 2023 Jul 31;8(32):29101-29112. doi: 10.1021/acsomega.3c02168. eCollection 2023 Aug 15.
6
Chitin Biodegradation by Lytic Polysaccharide Monooxygenases from In Vitro and In Vivo.
Int J Mol Sci. 2022 Dec 23;24(1):275. doi: 10.3390/ijms24010275.
7
Orchestrating copper binding: structure and variations on the cupredoxin fold.
J Biol Inorg Chem. 2022 Sep;27(6):529-540. doi: 10.1007/s00775-022-01955-2. Epub 2022 Aug 22.
8
Chitin-Active Lytic Polysaccharide Monooxygenases Are Rare in Species.
Appl Environ Microbiol. 2022 Aug 9;88(15):e0096822. doi: 10.1128/aem.00968-22. Epub 2022 Jul 12.
9
Decoding the Ambiguous Electron Paramagnetic Resonance Signals in the Lytic Polysaccharide Monooxygenase from .
Inorg Chem. 2022 May 23;61(20):8022-8035. doi: 10.1021/acs.inorgchem.2c00766. Epub 2022 May 12.
10
Role for a Lytic Polysaccharide Monooxygenase in Cell Wall Remodeling in Streptomyces coelicolor.
mBio. 2022 Apr 26;13(2):e0045622. doi: 10.1128/mbio.00456-22. Epub 2022 Mar 31.

本文引用的文献

1
The molecular basis of polysaccharide cleavage by lytic polysaccharide monooxygenases.
Nat Chem Biol. 2016 Apr;12(4):298-303. doi: 10.1038/nchembio.2029. Epub 2016 Feb 29.
4
Harnessing the potential of LPMO-containing cellulase cocktails poses new demands on processing conditions.
Biotechnol Biofuels. 2015 Nov 25;8:187. doi: 10.1186/s13068-015-0376-y. eCollection 2015.
5
Lytic Polysaccharide Monooxygenases in Biomass Conversion.
Trends Biotechnol. 2015 Dec;33(12):747-761. doi: 10.1016/j.tibtech.2015.09.006. Epub 2015 Oct 21.
8
A novel locus for mycelial aggregation forms a gateway to improved Streptomyces cell factories.
Microb Cell Fact. 2015 Apr 1;14:44. doi: 10.1186/s12934-015-0224-6.
9
Cellulose degradation by polysaccharide monooxygenases.
Annu Rev Biochem. 2015;84:923-46. doi: 10.1146/annurev-biochem-060614-034439. Epub 2015 Mar 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验