Department of Chemistry, University of Copenhagen, 2100 Copenhagen, Denmark.
INRA, Aix-Marseille Université, UMR1163 BBF (Biodiversité et Biotechnologie Fongiques), 13009 Marseille, France.
J Biol Chem. 2019 Nov 8;294(45):17117-17130. doi: 10.1074/jbc.RA119.009223. Epub 2019 Aug 30.
Lytic polysaccharide monooxygenases (LPMOs) are redox-enzymes involved in biomass degradation. All characterized LPMOs possess an active site of two highly conserved histidine residues coordinating a copper ion (the histidine brace), which are essential for LPMO activity. However, some protein sequences that belong to the AA9 LPMO family display a natural N-terminal His to Arg substitution (Arg-AA9). These are found almost entirely in the phylogenetic fungal class , associated with wood decay, but no function has been demonstrated for any Arg-AA9. Through bioinformatics, transcriptomic, and proteomic analyses we present data, which suggest that Arg-AA9 proteins could have a hitherto unidentified role in fungal degradation of lignocellulosic biomass in conjunction with other secreted fungal enzymes. We present the first structure of an Arg-AA9, AA9B, a naturally occurring protein from The AA9B structure reveals gross changes in the region equivalent to the canonical LPMO copper-binding site, whereas features implicated in carbohydrate binding in AA9 LPMOs have been maintained. We obtained a structure of AA9B with xylotetraose bound on the surface of the protein although with a considerably different binding mode compared with other AA9 complex structures. In addition, we have found indications of protein phosphorylation near the N-terminal Arg and the carbohydrate-binding site, for which the potential function is currently unknown. Our results are strong evidence that Arg-AA9s function markedly different from canonical AA9 LPMO, but nonetheless, may play a role in fungal conversion of lignocellulosic biomass.
溶细胞多糖单加氧酶(LPMOs)是参与生物质降解的氧化还原酶。所有有特征的 LPMOs 都具有两个高度保守的组氨酸残基协调铜离子的活性位点(组氨酸臂),这对于 LPMO 活性是必不可少的。然而,一些属于 AA9 LPMO 家族的蛋白质序列显示出天然的 N 端组氨酸到精氨酸的取代(Arg-AA9)。这些几乎完全存在于与木材腐烂相关的真菌分类中,但尚未证明任何 Arg-AA9 具有功能。通过生物信息学、转录组学和蛋白质组学分析,我们提供的数据表明,Arg-AA9 蛋白可能在真菌降解木质纤维素生物质方面具有迄今未知的作用,与其他分泌的真菌酶一起发挥作用。我们首次展示了 Arg-AA9 的结构,即来自 AA9B 的天然蛋白。AA9B 的结构揭示了与典型 LPMO 铜结合位点相当的区域的明显变化,而在 AA9 LPMOs 中与碳水化合物结合相关的特征得以保留。我们获得了 AA9B 与木四糖结合的结构,尽管与其他 AA9 复合物结构相比,结合模式有很大不同。此外,我们还发现了在 N 端精氨酸和碳水化合物结合位点附近存在蛋白质磷酸化的迹象,目前尚不清楚其潜在功能。我们的结果强烈表明,Arg-AA9 的功能与典型的 AA9 LPMO 明显不同,但仍然可能在真菌转化木质纤维素生物质方面发挥作用。