Suppr超能文献

阐明缺乏溶菌多糖单加氧酶组氨酸臂模体的一个不寻常的辅助活性 9 家族成员。

Insights into an unusual Auxiliary Activity 9 family member lacking the histidine brace motif of lytic polysaccharide monooxygenases.

机构信息

Department of Chemistry, University of Copenhagen, 2100 Copenhagen, Denmark.

INRA, Aix-Marseille Université, UMR1163 BBF (Biodiversité et Biotechnologie Fongiques), 13009 Marseille, France.

出版信息

J Biol Chem. 2019 Nov 8;294(45):17117-17130. doi: 10.1074/jbc.RA119.009223. Epub 2019 Aug 30.

Abstract

Lytic polysaccharide monooxygenases (LPMOs) are redox-enzymes involved in biomass degradation. All characterized LPMOs possess an active site of two highly conserved histidine residues coordinating a copper ion (the histidine brace), which are essential for LPMO activity. However, some protein sequences that belong to the AA9 LPMO family display a natural N-terminal His to Arg substitution (Arg-AA9). These are found almost entirely in the phylogenetic fungal class , associated with wood decay, but no function has been demonstrated for any Arg-AA9. Through bioinformatics, transcriptomic, and proteomic analyses we present data, which suggest that Arg-AA9 proteins could have a hitherto unidentified role in fungal degradation of lignocellulosic biomass in conjunction with other secreted fungal enzymes. We present the first structure of an Arg-AA9, AA9B, a naturally occurring protein from The AA9B structure reveals gross changes in the region equivalent to the canonical LPMO copper-binding site, whereas features implicated in carbohydrate binding in AA9 LPMOs have been maintained. We obtained a structure of AA9B with xylotetraose bound on the surface of the protein although with a considerably different binding mode compared with other AA9 complex structures. In addition, we have found indications of protein phosphorylation near the N-terminal Arg and the carbohydrate-binding site, for which the potential function is currently unknown. Our results are strong evidence that Arg-AA9s function markedly different from canonical AA9 LPMO, but nonetheless, may play a role in fungal conversion of lignocellulosic biomass.

摘要

溶细胞多糖单加氧酶(LPMOs)是参与生物质降解的氧化还原酶。所有有特征的 LPMOs 都具有两个高度保守的组氨酸残基协调铜离子的活性位点(组氨酸臂),这对于 LPMO 活性是必不可少的。然而,一些属于 AA9 LPMO 家族的蛋白质序列显示出天然的 N 端组氨酸到精氨酸的取代(Arg-AA9)。这些几乎完全存在于与木材腐烂相关的真菌分类中,但尚未证明任何 Arg-AA9 具有功能。通过生物信息学、转录组学和蛋白质组学分析,我们提供的数据表明,Arg-AA9 蛋白可能在真菌降解木质纤维素生物质方面具有迄今未知的作用,与其他分泌的真菌酶一起发挥作用。我们首次展示了 Arg-AA9 的结构,即来自 AA9B 的天然蛋白。AA9B 的结构揭示了与典型 LPMO 铜结合位点相当的区域的明显变化,而在 AA9 LPMOs 中与碳水化合物结合相关的特征得以保留。我们获得了 AA9B 与木四糖结合的结构,尽管与其他 AA9 复合物结构相比,结合模式有很大不同。此外,我们还发现了在 N 端精氨酸和碳水化合物结合位点附近存在蛋白质磷酸化的迹象,目前尚不清楚其潜在功能。我们的结果强烈表明,Arg-AA9 的功能与典型的 AA9 LPMO 明显不同,但仍然可能在真菌转化木质纤维素生物质方面发挥作用。

相似文献

1
Insights into an unusual Auxiliary Activity 9 family member lacking the histidine brace motif of lytic polysaccharide monooxygenases.
J Biol Chem. 2019 Nov 8;294(45):17117-17130. doi: 10.1074/jbc.RA119.009223. Epub 2019 Aug 30.
4
The rotamer of the second-sphere histidine in AA9 lytic polysaccharide monooxygenase is pH dependent.
Biophys J. 2024 May 7;123(9):1139-1151. doi: 10.1016/j.bpj.2024.04.002. Epub 2024 Apr 2.
5
Quantifying Oxidation of Cellulose-Associated Glucuronoxylan by Two Lytic Polysaccharide Monooxygenases from Neurospora crassa.
Appl Environ Microbiol. 2021 Nov 24;87(24):e0165221. doi: 10.1128/AEM.01652-21. Epub 2021 Oct 6.
6
Unliganded and substrate bound structures of the cellooligosaccharide active lytic polysaccharide monooxygenase LsAA9A at low pH.
Carbohydr Res. 2017 Aug 7;448:187-190. doi: 10.1016/j.carres.2017.03.010. Epub 2017 Mar 24.
9
Heterogeneity in the Histidine-brace Copper Coordination Sphere in Auxiliary Activity Family 10 (AA10) Lytic Polysaccharide Monooxygenases.
J Biol Chem. 2016 Jun 10;291(24):12838-12850. doi: 10.1074/jbc.M116.722447. Epub 2016 Apr 15.
10
A bioinformatics analysis of 3400 lytic polysaccharide oxidases from family AA9.
Carbohydr Res. 2017 Aug 7;448:166-174. doi: 10.1016/j.carres.2017.04.012. Epub 2017 Apr 13.

引用本文的文献

1
Anions and citrate inhibit LsAA9A, a lytic polysaccharide monooxygenase (LPMO).
FEBS J. 2025 Aug;292(16):4375-4389. doi: 10.1111/febs.70138. Epub 2025 May 27.
2
Functional characterization of fungal lytic polysaccharide monooxygenases for cellulose surface oxidation.
Biotechnol Biofuels Bioprod. 2023 Sep 7;16(1):132. doi: 10.1186/s13068-023-02383-3.
4
Orchestrating copper binding: structure and variations on the cupredoxin fold.
J Biol Inorg Chem. 2022 Sep;27(6):529-540. doi: 10.1007/s00775-022-01955-2. Epub 2022 Aug 22.
5
C-H Bond Cleavage by Bioinspired Nonheme Metal Complexes.
Inorg Chem. 2021 Sep 20;60(18):13759-13783. doi: 10.1021/acs.inorgchem.1c01754. Epub 2021 Sep 7.
6
Four cellulose-active lytic polysaccharide monooxygenases from Cellulomonas species.
Biotechnol Biofuels. 2021 Jan 23;14(1):29. doi: 10.1186/s13068-020-01860-3.
9
Functional characterization of cellulose-degrading AA9 lytic polysaccharide monooxygenases and their potential exploitation.
Appl Microbiol Biotechnol. 2020 Apr;104(8):3229-3243. doi: 10.1007/s00253-020-10467-5. Epub 2020 Feb 19.
10

本文引用的文献

1
Insecticidal fern protein Tma12 is possibly a lytic polysaccharide monooxygenase.
Planta. 2019 Jun;249(6):1987-1996. doi: 10.1007/s00425-019-03135-0. Epub 2019 Mar 22.
2
Recent insights into lytic polysaccharide monooxygenases (LPMOs).
Biochem Soc Trans. 2018 Dec 17;46(6):1431-1447. doi: 10.1042/BST20170549. Epub 2018 Oct 31.
3
Structure of a lytic polysaccharide monooxygenase from Aspergillus fumigatus and an engineered thermostable variant.
Carbohydr Res. 2018 Nov;469:55-59. doi: 10.1016/j.carres.2018.08.009. Epub 2018 Aug 14.
4
Functional characterization of a lytic polysaccharide monooxygenase from the thermophilic fungus Myceliophthora thermophila.
PLoS One. 2018 Aug 20;13(8):e0202148. doi: 10.1371/journal.pone.0202148. eCollection 2018.
7
Lytic xylan oxidases from wood-decay fungi unlock biomass degradation.
Nat Chem Biol. 2018 Mar;14(3):306-310. doi: 10.1038/nchembio.2558. Epub 2018 Jan 29.
8
Active-site copper reduction promotes substrate binding of fungal lytic polysaccharide monooxygenase and reduces stability.
J Biol Chem. 2018 Feb 2;293(5):1676-1687. doi: 10.1074/jbc.RA117.000109. Epub 2017 Dec 19.
9
Regular Motifs in Xylan Modulate Molecular Flexibility and Interactions with Cellulose Surfaces.
Plant Physiol. 2017 Dec;175(4):1579-1592. doi: 10.1104/pp.17.01184. Epub 2017 Oct 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验