Suppr超能文献

使用低温量子磁力计进行定量纳米级涡旋成像。

Quantitative nanoscale vortex imaging using a cryogenic quantum magnetometer.

机构信息

Department of Physics, University of Basel, Klingelbergstrasse 82, Basel CH-4056, Switzerland.

Physikalisches Institut and Center for Quantum Science (CQ) in LISA+, Universität Tübingen, Auf der Morgenstelle 14, D-72076 Tübingen, Germany.

出版信息

Nat Nanotechnol. 2016 Aug;11(8):677-81. doi: 10.1038/nnano.2016.63. Epub 2016 May 2.

Abstract

Microscopic studies of superconductors and their vortices play a pivotal role in understanding the mechanisms underlying superconductivity. Local measurements of penetration depths or magnetic stray fields enable access to fundamental aspects such as nanoscale variations in superfluid densities or the order parameter symmetry of superconductors. However, experimental tools that offer quantitative, nanoscale magnetometry and operate over large ranges of temperature and magnetic fields are still lacking. Here, we demonstrate the first operation of a cryogenic scanning quantum sensor in the form of a single nitrogen-vacancy electronic spin in diamond, which is capable of overcoming these existing limitations. To demonstrate the power of our approach, we perform quantitative, nanoscale magnetic imaging of Pearl vortices in the cuprate superconductor YBa2Cu3O7-δ. With a sensor-to-sample distance of ∼10 nm, we observe striking deviations from the prevalent monopole approximation in our vortex stray-field images, and find excellent quantitative agreement with Pearl's analytic model. Our experiments provide a non-invasive and unambiguous determination of the system's local penetration depth and are readily extended to higher temperatures and magnetic fields. These results demonstrate the potential of quantitative quantum sensors in benchmarking microscopic models of complex electronic systems and open the door for further exploration of strongly correlated electron physics using scanning nitrogen-vacancy magnetometry.

摘要

对超导体及其涡旋的微观研究在理解超导机制方面起着关键作用。对穿透深度或磁场杂散场的局部测量可深入了解超流密度的纳米级变化或超导体的序参量对称性等基本方面。然而,仍然缺乏能够提供定量、纳米级磁强计并在大温度和磁场范围内运行的实验工具。在这里,我们展示了金刚石中单个氮空位电子自旋形式的低温扫描量子传感器的首次运行,该传感器能够克服这些现有局限性。为了展示我们方法的威力,我们对铜酸盐超导体 YBa2Cu3O7-δ 中的 Pearl 涡旋进行了定量纳米级磁成像。通过传感器到样品的距离约为 10nm,我们在涡旋杂散场图像中观察到与普遍的单极近似的明显偏离,并与 Pearl 的解析模型得出了极好的定量一致性。我们的实验提供了对系统局部穿透深度的非侵入性和明确的确定,并且很容易扩展到更高的温度和磁场。这些结果表明了定量量子传感器在基准复杂电子系统微观模型方面的潜力,并为使用扫描氮空位磁强计进一步探索强关联电子物理开辟了道路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验