Center for Spintronics and Quantum Computation, University of California, Santa Barbara, CA 93106, USA.
Proc Natl Acad Sci U S A. 2013 May 7;110(19):7595-600. doi: 10.1073/pnas.1305920110. Epub 2013 Apr 22.
The study of individual quantum systems in solids, for use as quantum bits (qubits) and probes of decoherence, requires protocols for their initialization, unitary manipulation, and readout. In many solid-state quantum systems, these operations rely on disparate techniques that can vary widely depending on the particular qubit structure. One such qubit, the nitrogen-vacancy (NV) center spin in diamond, can be initialized and read out through its special spin-selective intersystem crossing, while microwave electron spin resonance techniques provide unitary spin rotations. Instead, we demonstrate an alternative, fully optical approach to these control protocols in an NV center that does not rely on its intersystem crossing. By tuning an NV center to an excited-state spin anticrossing at cryogenic temperatures, we use coherent population trapping and stimulated Raman techniques to realize initialization, readout, and unitary manipulation of a single spin. Each of these techniques can be performed directly along any arbitrarily chosen quantum basis, removing the need for extra control steps to map the spin to and from a preferred basis. Combining these protocols, we perform measurements of the NV center's spin coherence, a demonstration of this full optical control. Consisting solely of optical pulses, these techniques enable control within a smaller footprint and within photonic networks. Likewise, this unified approach obviates the need for both electron spin resonance manipulation and spin addressability through the intersystem crossing. This method could therefore be applied to a wide range of potential solid-state qubits, including those which currently lack a means to be addressed.
在固体中研究单个量子系统,将其用作量子位(qubit)和退相干探测器,需要对其进行初始化、幺正操作和读出的协议。在许多固态量子系统中,这些操作依赖于不同的技术,这些技术可能因特定的量子位结构而有很大差异。其中一个量子位是钻石中的氮空位(NV)中心自旋,它可以通过其特殊的自旋选择系间交叉来初始化和读出,而微波电子自旋共振技术则提供了幺正自旋旋转。相反,我们在不依赖系间交叉的情况下,在 NV 中心演示了这些控制协议的另一种替代的全光学方法。通过将 NV 中心调谐到低温下的激发态自旋反交叉,我们使用相干布居囚禁和受激拉曼技术来实现单个自旋的初始化、读出和幺正操作。这些技术中的每一种都可以直接沿着任意选择的量子基执行,无需额外的控制步骤将自旋映射到或从首选基。通过组合这些协议,我们对 NV 中心的自旋相干性进行了测量,展示了这种全光学控制。这些技术仅由光脉冲组成,可在较小的空间内和光子网络内进行控制。同样,这种统一的方法也无需电子自旋共振操作和通过系间交叉进行自旋寻址。因此,这种方法可以应用于广泛的潜在固态量子位,包括那些目前缺乏寻址手段的量子位。