Wildenhain Jan, Spitzer Michaela, Dolma Sonam, Jarvik Nick, White Rachel, Roy Marcia, Griffiths Emma, Bellows David S, Wright Gerard D, Tyers Mike
Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK.
Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8N 3Z5, Canada.
Cell Syst. 2015 Dec 23;1(6):383-95. doi: 10.1016/j.cels.2015.12.003.
The structure of genetic interaction networks predicts that, analogous to synthetic lethal interactions between non-essential genes, combinations of compounds with latent activities may exhibit potent synergism. To test this hypothesis, we generated a chemical-genetic matrix of 195 diverse yeast deletion strains treated with 4,915 compounds. This approach uncovered 1,221 genotype-specific inhibitors, which we termed cryptagens. Synergism between 8,128 structurally disparate cryptagen pairs was assessed experimentally and used to benchmark predictive algorithms. A model based on the chemical-genetic matrix and the genetic interaction network failed to accurately predict synergism. However, a combined random forest and Naive Bayesian learner that associated chemical structural features with genotype-specific growth inhibition had strong predictive power. This approach identified previously unknown compound combinations that exhibited species-selective toxicity toward human fungal pathogens. This work demonstrates that machine learning methods trained on unbiased chemical-genetic interaction data may be widely applicable for the discovery of synergistic combinations in different species.
基因相互作用网络的结构预测,类似于非必需基因之间的合成致死相互作用,具有潜在活性的化合物组合可能表现出强大的协同作用。为了验证这一假设,我们构建了一个化学-基因矩阵,其中包含195种不同的酵母缺失菌株,并用4915种化合物对其进行处理。这种方法发现了1221种基因型特异性抑制剂,我们将其称为隐源化合物。通过实验评估了8128对结构不同的隐源化合物对之间的协同作用,并将其用于对预测算法进行基准测试。基于化学-基因矩阵和基因相互作用网络的模型未能准确预测协同作用。然而,一种将化学结构特征与基因型特异性生长抑制相关联的随机森林和朴素贝叶斯学习器的组合具有很强的预测能力。这种方法识别出了以前未知的对人类真菌病原体具有物种选择性毒性的化合物组合。这项工作表明,基于无偏化学-基因相互作用数据训练的机器学习方法可能广泛适用于发现不同物种中的协同组合。