Suppr超能文献

通过机器学习从化学-基因相互作用预测协同作用

Prediction of Synergism from Chemical-Genetic Interactions by Machine Learning.

作者信息

Wildenhain Jan, Spitzer Michaela, Dolma Sonam, Jarvik Nick, White Rachel, Roy Marcia, Griffiths Emma, Bellows David S, Wright Gerard D, Tyers Mike

机构信息

Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK.

Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8N 3Z5, Canada.

出版信息

Cell Syst. 2015 Dec 23;1(6):383-95. doi: 10.1016/j.cels.2015.12.003.

Abstract

The structure of genetic interaction networks predicts that, analogous to synthetic lethal interactions between non-essential genes, combinations of compounds with latent activities may exhibit potent synergism. To test this hypothesis, we generated a chemical-genetic matrix of 195 diverse yeast deletion strains treated with 4,915 compounds. This approach uncovered 1,221 genotype-specific inhibitors, which we termed cryptagens. Synergism between 8,128 structurally disparate cryptagen pairs was assessed experimentally and used to benchmark predictive algorithms. A model based on the chemical-genetic matrix and the genetic interaction network failed to accurately predict synergism. However, a combined random forest and Naive Bayesian learner that associated chemical structural features with genotype-specific growth inhibition had strong predictive power. This approach identified previously unknown compound combinations that exhibited species-selective toxicity toward human fungal pathogens. This work demonstrates that machine learning methods trained on unbiased chemical-genetic interaction data may be widely applicable for the discovery of synergistic combinations in different species.

摘要

基因相互作用网络的结构预测,类似于非必需基因之间的合成致死相互作用,具有潜在活性的化合物组合可能表现出强大的协同作用。为了验证这一假设,我们构建了一个化学-基因矩阵,其中包含195种不同的酵母缺失菌株,并用4915种化合物对其进行处理。这种方法发现了1221种基因型特异性抑制剂,我们将其称为隐源化合物。通过实验评估了8128对结构不同的隐源化合物对之间的协同作用,并将其用于对预测算法进行基准测试。基于化学-基因矩阵和基因相互作用网络的模型未能准确预测协同作用。然而,一种将化学结构特征与基因型特异性生长抑制相关联的随机森林和朴素贝叶斯学习器的组合具有很强的预测能力。这种方法识别出了以前未知的对人类真菌病原体具有物种选择性毒性的化合物组合。这项工作表明,基于无偏化学-基因相互作用数据训练的机器学习方法可能广泛适用于发现不同物种中的协同组合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f65/5998823/0dd11f783e47/nihms972925f1.jpg

相似文献

引用本文的文献

本文引用的文献

1
Functional genomics to uncover drug mechanism of action.功能基因组学揭示药物作用机制。
Nat Chem Biol. 2015 Dec;11(12):942-8. doi: 10.1038/nchembio.1963. Epub 2015 Nov 17.
4
High-throughput functional genomics using CRISPR-Cas9.使用CRISPR-Cas9的高通量功能基因组学。
Nat Rev Genet. 2015 May;16(5):299-311. doi: 10.1038/nrg3899. Epub 2015 Apr 9.
5
Infectious Disease. How to bolster the antifungal pipeline.传染病。如何加强抗真菌药物研发渠道。
Science. 2015 Mar 27;347(6229):1414-6. doi: 10.1126/science.aaa6097. Epub 2015 Mar 26.
6
Targeting the adaptability of heterogeneous aneuploids.针对异质非整倍体的适应性。
Cell. 2015 Feb 12;160(4):771-784. doi: 10.1016/j.cell.2015.01.026.
7
The evolution of fungicide resistance.杀菌剂抗性的演变。
Adv Appl Microbiol. 2015;90:29-92. doi: 10.1016/bs.aambs.2014.09.001. Epub 2014 Nov 12.
8
The BioGRID interaction database: 2015 update.生物通用互作数据库:2015年更新版
Nucleic Acids Res. 2015 Jan;43(Database issue):D470-8. doi: 10.1093/nar/gku1204. Epub 2014 Nov 26.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验