Suppr超能文献

基于生物活性谱的药物再利用新靶点识别

Novel target identification towards drug repurposing based on biological activity profiles.

作者信息

Xue Binghan, Xu Yanji, Huang Ruili, Zhu Qian

机构信息

Division of Rare Disease Research Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, Maryland, United States of America.

Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, Maryland, United States of America.

出版信息

PLoS One. 2025 May 6;20(5):e0319865. doi: 10.1371/journal.pone.0319865. eCollection 2025.

Abstract

Rare diseases affect more than 30 million individuals, with the majority facing limited treatment options, elevating the urgency to innovative therapeutic solutions. Addressing these medical challenges necessitates an exploration of novel treatment modalities. Among these, drug repurposing emerges as a promising avenue, offering both potential and risk mitigation. To achieve this goal, we primarily focused on developing predictive models that harness cutting-edge computational techniques to uncover latent relationships between gene targets and chemical compounds towards drug repurposing. Building upon our previous investigation, where we successfully identified gene targets for compounds from the Tox21 in vitro assays, our endeavor expanded to a systematic prediction of potential targets for drug repurposing employing machine learning models built on diverse algorithms such as Support Vector Classifier, K-Nearest Neighbors, Random Forest, and Extreme Gradient Boosting. These models were trained on comprehensive biological activity profile data to predict the relationship between 143 gene targets and over 6000 compounds. Our models demonstrated high accuracy (>0.75), with predictions further validated by using public experimental datasets. Furthermore, several findings were evaluated via case studies. By elucidating these connections, we aim to streamline the drug repurposing process, ultimately catalyzing the discovery of more effective therapeutic interventions for rare diseases.

摘要

罕见病影响着超过3000万人,大多数患者面临有限的治疗选择,这凸显了创新治疗方案的紧迫性。应对这些医学挑战需要探索新的治疗方式。其中,药物重新利用成为一条有前景的途径,既能带来潜力,又能降低风险。为实现这一目标,我们主要专注于开发预测模型,利用前沿计算技术揭示基因靶点与化合物之间的潜在关系,以用于药物重新利用。基于我们之前的研究,在该研究中我们成功地从Tox21体外试验中确定了化合物的基因靶点,我们的工作扩展到使用基于支持向量分类器、K近邻、随机森林和极端梯度提升等不同算法构建的机器学习模型,对药物重新利用的潜在靶点进行系统预测。这些模型在全面的生物活性谱数据上进行训练,以预测143个基因靶点与6000多种化合物之间的关系。我们的模型显示出高准确率(>0.75),预测结果通过使用公共实验数据集进一步得到验证。此外,通过案例研究对一些发现进行了评估。通过阐明这些联系,我们旨在简化药物重新利用过程,最终促进发现更有效的罕见病治疗干预措施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3905/12054903/6af1543feab0/pone.0319865.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验