Doblin Martina A, van Sebille Erik
Plant Functional Biology and Climate Change Cluster, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia;
Grantham Institute and Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom; Australian Research Council Centre of Excellence for Climate System Science, Climate Change Research Centre, University of New South Wales, Sydney, NSW 2052, Australia.
Proc Natl Acad Sci U S A. 2016 May 17;113(20):5700-5. doi: 10.1073/pnas.1521093113. Epub 2016 May 2.
Microbes are the foundation of marine ecosystems [Falkowski PG, Fenchel T, Delong EF (2008) Science 320(5879):1034-1039]. Until now, the analytical framework for understanding the implications of ocean warming on microbes has not considered thermal exposure during transport in dynamic seascapes, implying that our current view of change for these critical organisms may be inaccurate. Here we show that upper-ocean microbes experience along-trajectory temperature variability up to 10 °C greater than seasonal fluctuations estimated in a static frame, and that this variability depends strongly on location. These findings demonstrate that drift in ocean currents can increase the thermal exposure of microbes and suggests that microbial populations with broad thermal tolerance will survive transport to distant regions of the ocean and invade new habitats. Our findings also suggest that advection has the capacity to influence microbial community assemblies, such that regions with strong currents and large thermal fluctuations select for communities with greatest plasticity and evolvability, and communities with narrow thermal performance are found where ocean currents are weak or along-trajectory temperature variation is low. Given that fluctuating environments select for individual plasticity in microbial lineages, and that physiological plasticity of ancestors can predict the magnitude of evolutionary responses of subsequent generations to environmental change [Schaum CE, Collins S (2014) Proc Biol Soc 281(1793):20141486], our findings suggest that microbial populations in the sub-Antarctic (∼40°S), North Pacific, and North Atlantic will have the most capacity to adapt to contemporary ocean warming.
微生物是海洋生态系统的基础[法尔科夫斯基PG,芬切尔T,德隆EF(2008年)《科学》320(5879):1034 - 1039]。到目前为止,用于理解海洋变暖对微生物影响的分析框架尚未考虑在动态海洋环境中传输过程中的热暴露情况,这意味着我们目前对这些关键生物变化的看法可能不准确。在此我们表明,上层海洋微生物沿轨迹经历的温度变异性比在静态框架中估计的季节性波动高10℃,并且这种变异性强烈依赖于位置。这些发现表明洋流漂移会增加微生物的热暴露,并表明具有广泛热耐受性的微生物种群将在传输到海洋遥远区域并侵入新栖息地的过程中存活下来。我们的发现还表明平流有能力影响微生物群落的组装,使得具有强洋流和大温度波动的区域选择具有最大可塑性和进化能力的群落,而在洋流较弱或沿轨迹温度变化较小的地方发现热性能较窄的群落。鉴于波动环境会选择微生物谱系中的个体可塑性,并且祖先的生理可塑性可以预测后代对环境变化的进化反应程度[绍姆CE,柯林斯S(2014年)《英国皇家学会学报B》281(1793):20141486],我们的发现表明亚南极(约南纬40°)、北太平洋和北大西洋的微生物种群最有能力适应当代海洋变暖。